福島大 1/6公式証明 - 質問解決D.B.(データベース)

福島大 1/6公式証明

問題文全文(内容文):
$y=2x-x^2$と$x$軸とで囲まれる面積を$(2,0)$を通る直線が二等分する直線の傾きを求めよ

出典:1993年福島大学 過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=2x-x^2$と$x$軸とで囲まれる面積を$(2,0)$を通る直線が二等分する直線の傾きを求めよ

出典:1993年福島大学 過去問
投稿日:2019.10.06

<関連動画>

大学入試問題#566「計算力勝負」 京都帝国大学(1936) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3}{x^2-3x+2}\ dx$

出典:1936年京都帝国大学 入試問題
この動画を見る 

福田の数学〜神戸大学2024年理系第4問〜回転体の体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 1辺の長さが$\sqrt 2$の正方形ABCDを底面にもち、高さが1である直方体ABCD-EFGHを、頂点の座標がそれぞれ
A(1,0,0), B(0,1,0), C(-1,0,0), D(0,-1,0),
E(1,0,1), F(0,1,1), G(-1,0,1), H(0,-1,1)
になるように$xyz$空間におく。以下の問いに答えよ。
(1)直方体ABCD-EFGHを直線AEのまわりに1回転してできる回転体を$X_1$とし、また直線ABのまわりに1回転してできる回転体を$X_2$とする。$X_1$の体積$V_1$と$X_2$の体積$V_2$を求めよ。
(2)0≦$t$≦1 とする。平面$x$=$t$と線分EFの共有点の座標を求めよ。
(3)直方体ABCD-EFGHを$x$軸のまわりに1回転してできる回転体を$X_3$とする。
$X_3$の体積$V_3$を求めよ。
この動画を見る 

大学入試問題#354「思った以上に大変でした・・・」 弘前大学 改  #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\ x} \displaystyle \frac{(e^x-1)(e^x-2)}{e^x+1} dx$

出典:広前大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分1 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int x\sqrt[3]{1+x}~dx$
(2) $\displaystyle \int \sin x \cos^4x~dx$
(3) $\displaystyle \int \frac {dx}{\cos^4x}$
(4) $\displaystyle \int (2x+1)e^{x^2+x+5}~dx$
(5) $\displaystyle \int \frac{e^{2x}}{(e^x+2)^2}~dx$
(6) $\displaystyle \int \frac{\log x}{x(\log x-1)^2}~dx$


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x}{\cos^2x}~dx$
(2) $\displaystyle \int x\log(x-2)~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int x\log(x^2-2)~dx$
(2) $\displaystyle \int e^x\log(e^x+1)~dx$

不定積分$\displaystyle \int (\log x)^3~dx$を求めよ。
この動画を見る 

重積分⑧-6 #155 【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

$D:\geqq 0,y\geqq 0,\dfrac{x^2}{4}+\dfrac{y^2}{4}\leqq 1$
$\iint_D \ xy \ dx \ dy$
この動画を見る 
PAGE TOP