問題文全文(内容文):
$f(x)=x^3-3ax^2+bx+c$
一次関数$g(x)$
$f(x)=f'(x)g(x)-6x$を満たす
(1)
$b,c$を$a$で表せ
(2)
$f(x)=0$が相異なる3つの実数解をもつ$a$の範囲を求めよ
出典:2019年北海道大学 過去問
$f(x)=x^3-3ax^2+bx+c$
一次関数$g(x)$
$f(x)=f'(x)g(x)-6x$を満たす
(1)
$b,c$を$a$で表せ
(2)
$f(x)=0$が相異なる3つの実数解をもつ$a$の範囲を求めよ
出典:2019年北海道大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax^2+bx+c$
一次関数$g(x)$
$f(x)=f'(x)g(x)-6x$を満たす
(1)
$b,c$を$a$で表せ
(2)
$f(x)=0$が相異なる3つの実数解をもつ$a$の範囲を求めよ
出典:2019年北海道大学 過去問
$f(x)=x^3-3ax^2+bx+c$
一次関数$g(x)$
$f(x)=f'(x)g(x)-6x$を満たす
(1)
$b,c$を$a$で表せ
(2)
$f(x)=0$が相異なる3つの実数解をもつ$a$の範囲を求めよ
出典:2019年北海道大学 過去問
投稿日:2019.10.20