【円周角を制すものは…】図形:京都府高校入試~全国入試問題解法 - 質問解決D.B.(データベース)

【円周角を制すものは…】図形:京都府高校入試~全国入試問題解法

問題文全文(内容文):
入試問題 京都府の高校

図で、
$4$点$A, B, C, D$は、
円$O$の周上にあり、 線分$BD$は、
円$O$の直径である。
$ \angle x$の大きさを求めよ。
※図は動画内参照
単元: #数学(中学生)#中3数学#円#高校入試過去問(数学)#京都府公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 京都府の高校

図で、
$4$点$A, B, C, D$は、
円$O$の周上にあり、 線分$BD$は、
円$O$の直径である。
$ \angle x$の大きさを求めよ。
※図は動画内参照
投稿日:2020.11.16

<関連動画>

"2025"を含む問題予想《考察編》:入試予想問題~全国入試問題解法

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$2025 = 45^2$
この動画を見る 

複数個の円 愛工大名電

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
円の半径=?
*図は動画内参照

愛知工業大学名電高等学校
この動画を見る 

【素早く解くには…!】文字式:青雲高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)#青雲高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x=\dfrac{3\sqrt{2}+2\sqrt{3}}{3},y=\dfrac{3\sqrt{2}-2\sqrt{3}}{2}のとき、$
$9x^2-4y^2の値を求めよ。$
この動画を見る 

square root : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
square root : Shirotan's cute kawaii math show

$\displaystyle \frac{(\sqrt{ 14 }-\sqrt{ 6 })(\sqrt{ 7}+\sqrt{ 3 } )}{2}-(\sqrt{ 2 }+1)^2=?$
を計算せよ。
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
この動画を見る 
PAGE TOP