数学オリンピック予選 整数問題 - 質問解決D.B.(データベース)

数学オリンピック予選 整数問題

問題文全文(内容文):
$11^{12^{13}}$の十の位

$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない

出典:2007年数学オリンピック 予選問題
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$11^{12^{13}}$の十の位

$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない

出典:2007年数学オリンピック 予選問題
投稿日:2019.11.18

<関連動画>

福田のおもしろ数学019〜ジュニア数学オリンピック本選問題〜直角三角形の斜辺の長さを求める

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#三平方の定理#三角形の辺の比(内分・外分・二等分線)#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
直角三角形の一辺の長さが 18 で、すべての辺の長さが整数のとき、斜辺の長さは?

ジュニア数学オリンピック過去問
この動画を見る 

モスクワ数学オリンピック 整数

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは自然数とするとき,
$1!+2!+3!+・・・・・・+x!=y^2$を求めよ.

モスクワ数学オリンピック過去問
この動画を見る 

福田のおもしろ数学140〜不等式の証明とRavi変換

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#恒等式・等式・不等式の証明#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$, $b$, $c$が三角形の3辺の長さのとき次の不等式を証明せよ。
$a^2(b+c-a)$+$b^2(c+a-b)$+$c^2(a+b-c)$≦$3abc$
この動画を見る 

シンガポール数学オリンピックの問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学オリンピック#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BD:DC=1:2
$\angle C=?$
*図は動画内参照

2013数学オリンピック
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[p][g][r]^2=[a][b][c][d][e]$
(3ケタ)$^2$=5ケタ
文字はすべて素数

出典:数学オリンピック 予選問題
この動画を見る 
PAGE TOP