芝浦工業大 漸化式 特性方程式 - 質問解決D.B.(データベース)

芝浦工業大 漸化式 特性方程式

問題文全文(内容文):
$a_1=9$
$S_{n+1}=4a_n-10$
一般項$a_n$を求めよ

出典:2005年芝浦工業大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#芝浦工業大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=9$
$S_{n+1}=4a_n-10$
一般項$a_n$を求めよ

出典:2005年芝浦工業大学 過去問
投稿日:2019.12.06

<関連動画>

0か1か

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
0 or 1
(1) $2^0=$
(2) $1!=$
(3) $0!=$
(4) ${}_nC_0=$
(5) $□ロ- (日米通算4367安打)$
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 

『Σ』の記号の意味を理解させます

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
『$\Sigma$』の記号の意味を理解させます
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第5問〜定積分で定義された数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $a_n$=$\displaystyle\frac{1}{n!}\int_1^e(\log x)^ndx$ ($n$=1,2,3,...)とおく。
(1)$a_1$を求めよ。
(2)不等式0≦$a_n$≦$\frac{e-1}{n!}$ が成り立つことを示せ。
(3)$n$≧2のとき、$a_n$=$\displaystyle\frac{e}{n!}$-$a_{n-1}$ であることを示せ。
(4)$\displaystyle\lim_{n \to \infty}\sum_{k=2}^n\frac{(-1)^k}{k!}$ を求めよ。
この動画を見る 

京大 徳島大 整数・漸化式 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#徳島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
Pを素数、nを自然数
$(P^n)!$はPで何回割り切れるか

徳島大学過去問題
$a_1 = 2\sqrt2 , a_{n+1}=2 \sqrt{a_n}$
(1)一般項$a_n$を求めよ。
(2)初項から第n項までの積$a_1 a_2 \cdots a_n$を求めよ。
この動画を見る 
PAGE TOP