息抜き ゆく年くる年連立方程式 - 質問解決D.B.(データベース)

息抜き ゆく年くる年連立方程式

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2019x+2020y=4055 \\
2020x+2019y=4023
\end{array}
\right.
\end{eqnarray}$
これを解け.
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2019x+2020y=4055 \\
2020x+2019y=4023
\end{array}
\right.
\end{eqnarray}$
これを解け.
投稿日:2019.12.11

<関連動画>

手強いぞ 連立方程式 慶應義塾(神奈川)

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け(x>y)
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y + xy^2 -9xy = 120 \\
xy + x + y - 9 = -22
\end{array}
\right.
\end{eqnarray}

2023慶應義塾高等学校(改)
この動画を見る 

再撮影しましたので、概要欄のリンクからお願いします!

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
( )も分数も少数も全部消してやるぜ!

$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x}{3}=+\displaystyle \frac{y}{4}=-1 \\
3y=5x-9
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

直角三角形の中に直角

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
三角形の高さ$x$を求めよ。
図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守34

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34

①$(-8)+(-4)$

②$-\frac{5}{7}+\frac{2}{3}$

③$65a^2b \div5a$

④$\frac{18}{\sqrt{2}}-\sqrt{98}$

⑤$(x+9)^2-(x-3)(x-7)$

⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。

⑦2次方程式$6x^2-2x-1=0$を解きなさい。

⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。

④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。

⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。


Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。



右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る 

【やり方を短時間でマスター!!】連立方程式(代入法・加減法)〔現役講師解説、中学、数学〕

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 3rd School
問題文全文(内容文):
中学2年生 数学
連立方程式

加減法
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 15 \\
9x - 5y = 12
\end{array}
\right.
\end{eqnarray}$

代入法
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x - 2y = 2 \\
y = x + 2
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP