合同式の基礎 累乗の式変形 - 質問解決D.B.(データベース)

合同式の基礎 累乗の式変形

問題文全文(内容文):
$3^{2n+1}+4^{3n-1}$が7の倍数となる自然数$n$を3つ求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^{2n+1}+4^{3n-1}$が7の倍数となる自然数$n$を3つ求めよ
投稿日:2019.12.26

<関連動画>

【数A】整数の性質:東京大学(理系)2003年 第4問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
この動画を見る 

京都大学 整数問題 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2018年 国立大学法人京都大学

$n^3-7n+9$が素数となる整数$n$を求めよ。
この動画を見る 

大学入試問題#248 慶應義塾大学(2014) #方程式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y,z:0$でない整数
$\displaystyle \frac{1}{xy}+\displaystyle \frac{1}{yz}+\displaystyle \frac{1}{zx}=\displaystyle \frac{1}{xy+yz+zx}$
$2^{x+1}=\displaystyle \frac{5^{2y}}{10^{z+1}}$
をみたすとき$x,y,z$の値を求めよ。

出典:2014年慶應義塾大学 入試問題
この動画を見る 

漸化式と整数問題の融合

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$a_1=10,a_{n+1}=2a_n+3^{n+1}$
$a_n$が7の倍数となるような$n$を求めよ.
この動画を見る 

【数A】整数の性質:3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #サクシード#サクシード数学Ⅰ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
この動画を見る 
PAGE TOP