対等性とは?僕と君は対等な関係 法政大学高校 - 質問解決D.B.(データベース)

対等性とは?僕と君は対等な関係 法政大学高校

問題文全文(内容文):
H,O,S,E,Iの5文字を1列に並べるときHがSより左にある場合の数を求めよ。
法政大学高等学校
単元: #数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
H,O,S,E,Iの5文字を1列に並べるときHがSより左にある場合の数を求めよ。
法政大学高等学校
投稿日:2021.09.09

<関連動画>

【40分で総整理】基礎の基礎から『場合の数』(数学A)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1⃣
A,B,C,D,Eの5人から3人を選んで並べるとき、その総数は?

2⃣
男子5人、女子3人の合計8人が1列に並ぶとき、次の並び方は何通りあるか。
(1)男子が両端に来る
(2)女子3人が隣り合う

3⃣
a,b,c,d,eを1つずつ使ってできる文字列をabcdeからedcbaまでアルファベット順で並べるとき、cbdeaは何番目か。

4⃣
5人を円形に並べたとき、その総数は何通り?

5⃣
1から5までの自然数を使ってできる3桁の整数は何通りあるか?
ただし同じ数字を繰り返し使ってもよい。

6⃣
A,B,C,D,Eの5人から3人を選んで組をつくるとき、その総数は?

7⃣
生徒9人を3人ずつ、3つのグループA,B,Cに分ける分け方は何通りか。

8⃣
a,a,a,b,bの5文字を1列に並べる順列は何通りあるか。
この動画を見る 

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 

福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に
X1,X2,,Xnとする。X1,X2,,Xnの最小公倍数をLn,
最大公約数をGnとするとき、以下の問いに答えよ。
(1)L2=5となる確率およびG2=5となる確率を求めよ。
(2)Lnが素数でない確率を求めよ。
(3)Gnが素数でない確率を求めよ。

2022大阪大学文系過去問
この動画を見る 

きょ、京大!?絶対に落としてはいけない2023年度の確率の問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを自然数とする。一個のさいころをn回投げ、出た目を順にX1,X2,Xnとし、n個の数の積X1,X2,XnYとする。

(1)Yが5で割り切れる確率を求めよ。

京都大過去問
この動画を見る 

数学「大学入試良問集」【4−1 組分け問題①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
何人かの人をいくつかの部屋に分ける問題を考える。
ただし、各部屋は十分に大きく、定員については考慮しなくてよい。
(1)
7人を2つの部屋A,Bに分ける。
 (ⅰ)部屋Aに3人、部屋Bに4人となる分け方は全部で何通りあるか。
 (ⅱ)どの部屋も1人以上になる分け方は全部で何通りあるか。
 (ⅲ)(ⅱ)のうち、部屋Aの人数が奇数である分け方は全部で何通りあるか。

(2)
4人を三つの部屋A,B,Cに分ける。
どの部屋も1人以上になる分け方は全部で何通りあるか。

(3)
大人4人、こども3人の計7人を三つの部屋A,B,Cに分ける。
 (ⅰ)どの部屋も大人が1人以上になる分け方は全部で何通りあるか。
 (ⅱ)(ⅱ)のうち、三つの部屋に子ども3人が1人ずつ入る分け方は全部で何通りあるか。
 (ⅲ)どの部屋も大人が1人以上で、かつ、各部屋とも2人以上になる分け方は全部で何通りあるか。
この動画を見る 
PAGE TOP preload imagepreload image