綺麗な問題 - 質問解決D.B.(データベース)

綺麗な問題

問題文全文(内容文):
次の値を求めよ.
$\cos\dfrac{\pi}{33}・\cos\dfrac{2\pi}{33}・\cos\dfrac{4\pi}{33}・\cos\dfrac{8\pi}{33}・\cos\dfrac{16\pi}{33}$
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の値を求めよ.
$\cos\dfrac{\pi}{33}・\cos\dfrac{2\pi}{33}・\cos\dfrac{4\pi}{33}・\cos\dfrac{8\pi}{33}・\cos\dfrac{16\pi}{33}$
投稿日:2021.04.27

<関連動画>

【高校数学】数Ⅲ-8 複素数の積と商②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\alpha=1-i,\beta=\sqrt3+i$とする.
ただし,偏角は$0\leqq \theta \lt 2\pi$とする.

①$\alpha\beta,\dfrac{\alpha}{\beta}$をそれぞれ極形式で表そう.
②$arg\beta^4, \left\vert\dfrac{\alpha^2}{\beta^2}\right \vert$をそれぞれ求めよう.
この動画を見る 

組立除法、三角関数の合成、視聴者からの質問への返答

アイキャッチ画像
単元: #複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
組立除法、三角関数の合成、視聴者からの質問への返答です.
\begin{array}{r}
x-α\enclose{longdiv}{ax^3+bx^2+cx+d\phantom{0}} \\[-3pt]

\end{array}
この動画を見る 

【高校数学】 数Ⅱ-169 定積分②

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の定積分を求めよう。

①$\int_0^2 (x^2+1) dx+\int_2^3 (x^2+1) dx$

②$\int_{-3}^2 3x^2 dx-\int_{-3}^1 3x^2 dx$

③$\int_{-2}^3 (2x^3-4x) dx+\int_1^3 (4x-2x^3) dx$
この動画を見る 

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)実数x,yについて、$「|x-y| \leqq x+y」$であることの必要十分条件は
「$x \geqq 0$かつ$y \geqq 0$ 」であることを示せ。
(2)次の不等式で定まるxy平面上の領域を図示せよ。
$|1+y-2x^2-y^2| \leqq 1-y-y^2$

2022一橋大学文系過去問
この動画を見る 

イタリア数学オリンピック 整数問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは素数であり,m,nを自然数とする.
$p+q^2=m^2$なら$p^2+q^2$は平方数でないことを示せ.

イタリア数学オリンピック過去問
この動画を見る 
PAGE TOP