【数Ⅱ】三角関数:加法定理の利用 - 質問解決D.B.(データベース)

【数Ⅱ】三角関数:加法定理の利用

問題文全文(内容文):
$\sinx - \siny =\dfrac{1}{2} , \cosx - \cosy =\dfrac{1}{3}$ , のとき、$\cos (x-y)$ の値を求めなさい。
チャプター:

0:00 オープニング
0:18 問題の分析と方針
1:13 計算式の作り方
3:06 式の整理の仕方
5:38 まとめ

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sinx - \siny =\dfrac{1}{2} , \cosx - \cosy =\dfrac{1}{3}$ , のとき、$\cos (x-y)$ の値を求めなさい。
投稿日:2021.06.26

<関連動画>

【数Ⅱ】【三角関数】三角関数の合成2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0$\leqq$x$\lt$2πのとき、次の不等式を解け。
(1) sinx+cosx$\geqq$$\frac{1}{\sqrt{2} }$
(2) cosx$\lt$$\sqrt{3}$sinx
(3) $\sqrt{2}$$\leqq$sinx-$\sqrt{3}$cosx$\lt$$\sqrt{3}$
この動画を見る 

福田の数学〜北里大学2024医学部第1問(1)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2つの実数x,yは$x^2+y^2 \leqq 4,x \geqq 0 $を満たすとする。このとき、$3x+4y-3$の最小値は$\boxed{ ア }$、最大値は$\boxed{ イ }$である。また、$3x^2+4xy-3y^2$の最大値は$\boxed{ ウ }$である。
この動画を見る 

3通りで証明できる!?おもしろい解法を紹介【数学 三角関数】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$tan10°=tan20°・tan30°・tan40°$を示せ。
この動画を見る 

【高校数学】 数Ⅱ-102 三角関数を含む方程式・不等式④

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。

①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$

②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$

③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
この動画を見る 

福田の数学〜中央大学2024経済学部第1問(4)〜タンジェントの加法定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
・ $\tan\alpha=2,\tan\beta=3$のとき$\alpha+\beta$を求めよ。ただし、$0 < \alpha < \dfrac\pi2,0 < \beta < \dfrac\pi2$とする。
・ $\tan\alpha=2,\tan\beta=5,\tan\gamma=8$のとき$\alpha+\beta+\gamma$を求めよ。ただし、$\alpha,\beta,\gamma$は鋭角とする。
この動画を見る 
PAGE TOP