【数B】数列:種々の数列格子点 - 質問解決D.B.(データベース)

【数B】数列:種々の数列格子点

問題文全文(内容文):
座標平面上の曲線y=-nx²+2n²xとx軸で囲まれた図形(境界を含む)をDnとし、図形Dnにある格子点の個数をAnとする。
(1)A₁、A₂の値を求めよ。
(2)図形Dnの格子点のうち、x座標の値がx=k(k=0,1,2,・・・,2n)である格子点の個数をBkとする。Bkをnとkの式で表せ。
(3)Anをnの式で表せ。
チャプター:

0:00 オープニング
1:22 領域の図示(グラフ)
1:44 (1)の解答
5:03 (2)の解答
6:50 (3)の解答
11:20 まとめ

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上の曲線y=-nx²+2n²xとx軸で囲まれた図形(境界を含む)をDnとし、図形Dnにある格子点の個数をAnとする。
(1)A₁、A₂の値を求めよ。
(2)図形Dnの格子点のうち、x座標の値がx=k(k=0,1,2,・・・,2n)である格子点の個数をBkとする。Bkをnとkの式で表せ。
(3)Anをnの式で表せ。
投稿日:2021.07.12

<関連動画>

福田の一夜漬け数学〜等差数列・等比数列(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
初項から第10項までの和が550,初項から第20項までの和が700である\\
等差数列\left\{a_n\right\}について\\
(1)一般項a_nを求めよ。\\
(2)数列\left\{a_n\right\}の第20項から第30項までの和を求めよ。\\
(3)初項から第n項までの和S_nの最大値とそのときのnの値を求めよ。\\
\\
\\
初項から第4項までの和が45,初項から第8項までの和が765である\\
等比数列\left\{a_n\right\}を考える。\\
(1)一般項a_nを求めよ。\\
(2)数列\left\{a_n\right\}の公比が正であるとき、数列\left\{a_{2n-1}\right\}はどのような数列か。
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(2)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
次の漸化式を解け。\\
\\
\left\{\begin{array}{1}
a_1=1\\
a_{n+1}=3a_n+2^n\\
\end{array}\right.\\
\\
\left\{\begin{array}{1}
a_1=1\\
a_{n+1}=2a_n+n^2+2n\\
\end{array}\right.\\
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(4)〜等比数列となる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)数列\left\{a_n\right\}の階差数列を\left\{b_n\right\}とする。\left\{b_n\right\}が初項2、公比\frac{1}{3}の等比数列と\\
なるとき、\left\{b_n\right\}の一般項はb_n=\boxed{\ \ オ\ \ }である。また、\left\{a_n\right\}も等比数列に\\
なるならば、a_1=\boxed{\ \ カ\ \ }である。このとき\left\{a_n\right\}の一般項はa_n=\boxed{\ \ キ\ \ }である。
\end{eqnarray}
この動画を見る 

【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{a[n]},{b[n]},{c[n]}を次のように定める。a[1]=1, a[n+1]=2a[n]+1, b[1]=1, b[n+1]=2b[n]+a[n], c[1]=1, c[n+1]=3c[n]+b[n] (n=1,2,3,...)。次の問いに答えよう。
(1){a[n]}の一般項を求めよう。
(2)d[n]=b[n]/2^(n-1)とおくとき、
 (i)d[n+1]をd[n]を用いて表そう。 (ii){d[n]}の一般項を求めよう。
(3){c[n]}の一般項を求めよう。
この動画を見る 

福田の数学〜ポリアの壺は証明を覚えよう〜杏林大学2023年医学部第1問前編〜ポリアの壺

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。
この動画を見る 
PAGE TOP