問題文全文(内容文):
$\alpha=\sqrt{ 5 }-1+\sqrt{ 10+2\sqrt{ 5 } }i$
$\beta=-\sqrt{ 5 }-1+\sqrt{ 10-2\sqrt{ 5 } }i$
(1)
$\alpha,\beta$の両方を解にもつ実数係数の4次方程式を求めよ
(2)
$\beta^5$の値を求めよ
出典:1999年九州大学 過去問
$\alpha=\sqrt{ 5 }-1+\sqrt{ 10+2\sqrt{ 5 } }i$
$\beta=-\sqrt{ 5 }-1+\sqrt{ 10-2\sqrt{ 5 } }i$
(1)
$\alpha,\beta$の両方を解にもつ実数係数の4次方程式を求めよ
(2)
$\beta^5$の値を求めよ
出典:1999年九州大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\sqrt{ 5 }-1+\sqrt{ 10+2\sqrt{ 5 } }i$
$\beta=-\sqrt{ 5 }-1+\sqrt{ 10-2\sqrt{ 5 } }i$
(1)
$\alpha,\beta$の両方を解にもつ実数係数の4次方程式を求めよ
(2)
$\beta^5$の値を求めよ
出典:1999年九州大学 過去問
$\alpha=\sqrt{ 5 }-1+\sqrt{ 10+2\sqrt{ 5 } }i$
$\beta=-\sqrt{ 5 }-1+\sqrt{ 10-2\sqrt{ 5 } }i$
(1)
$\alpha,\beta$の両方を解にもつ実数係数の4次方程式を求めよ
(2)
$\beta^5$の値を求めよ
出典:1999年九州大学 過去問
投稿日:2020.01.24