九州大 虚数解を持つ4次方程式 - 質問解決D.B.(データベース)

九州大 虚数解を持つ4次方程式

問題文全文(内容文):
$\alpha=\sqrt{ 5 }-1+\sqrt{ 10+2\sqrt{ 5 } }i$
$\beta=-\sqrt{ 5 }-1+\sqrt{ 10-2\sqrt{ 5 } }i$

(1)
$\alpha,\beta$の両方を解にもつ実数係数の4次方程式を求めよ

(2)
$\beta^5$の値を求めよ

出典:1999年九州大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\sqrt{ 5 }-1+\sqrt{ 10+2\sqrt{ 5 } }i$
$\beta=-\sqrt{ 5 }-1+\sqrt{ 10-2\sqrt{ 5 } }i$

(1)
$\alpha,\beta$の両方を解にもつ実数係数の4次方程式を求めよ

(2)
$\beta^5$の値を求めよ

出典:1999年九州大学 過去問
投稿日:2020.01.24

<関連動画>

【数Ⅱ】解と係数の関係と対称式 α²+β²の値【複数の方法で理解を深める】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+2x+5=0の解を\alpha,\betaとする.\alpha^2+\beta^2を求めよ.$
この動画を見る 

産業医大 3次方程式と2次方程式の共通解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.

1996産業医大過去問
この動画を見る 

【高校数学】 数Ⅱー49 高次方程式④

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3次方程式$x^3+ax^2+bx+10=0$の1つの解が$2-i$であるとき、実数a,bの値とほかの解を求めよう。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(2)〜対数方程式と対称式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)1ではない正の実数$x,\ y$が次の条件を満たすとする。
$\left\{\begin{array}{1}
xy=\displaystyle\frac{1}{4}\\
\displaystyle\frac{1}{\log_2x}+\displaystyle\frac{1}{\log_2y}=\frac{8}{21}
\end{array}\right.$
このとき、$x+y=\frac{\boxed{\ \ キク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コサ\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

名古屋大 根号の計算 4次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$(\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } })^2$を計算せよ


(2)
$a=\sqrt{ 13 }+\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } }$を解にもつ整数係数の4次方程式を求めよ


(3)
8つの実数$\pm \sqrt{ 13 }\pm \sqrt{ 9+2\sqrt{ 17 } } \pm \sqrt{ 9-2\sqrt{ 17 } }$(複号任意)のうち(2)で求めた方程式の解


出典:1975年名古屋大学 過去問
この動画を見る 
PAGE TOP