東工大 指数関数の接線の本数 - 質問解決D.B.(データベース)

東工大 指数関数の接線の本数

問題文全文(内容文):
$y=e^x$に$(a,b)$から何本の接線が引けるか.

1980東工大過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から何本の接線が引けるか.

1980東工大過去問
投稿日:2020.12.14

<関連動画>

やっぱり指数が好き

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$16^x = 49$
$7^y=64$
$(xy)^{xy} = ?$
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{2024} -2^{2023} = 2^{?}$
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)座標平面上で、次の3つの3次関数のグラフについて考える。\\
y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤\\
y=5x^3-x^2+3x+5 \ldots⑥\\
④,⑤,⑥の3次関数のグラフには次の共通点がある。\\
共通点:・y軸との交点のy座標は\boxed{\ \ ソ\ \ } である。\\
・y軸との交点における接線の方程式は y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ } である。\\
\\
a,b,c,dを0でない実数とする。\\
曲線y=ax^3+bx^2+cx+d上の点(0, \boxed{\ \ ツ\ \ })における接線の方程式は\\
y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ } である。\\
次にf(x)=ax^3+bx^2+cx+d, g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }とし、\\
f(x)-g(x)について考える。\\
h(x)=f(x)-g(x)とおく。a,b,c,dが正の実数であるとき、y=h(x)のグラフ\\
の概形は\boxed{\ \ ナ\ \ }である。\\
\\
(※\boxed{\ \ ナ\ \ }の解答群は動画参照)\\
y=f(x)のグラフとy=g(x)のグラフの共有点のx座標は\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }である。\\
また、xが\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }の間を動くとき、\\
|f(x)-g(x)|の値が最大となるのは、x=\frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}のときである。
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$実数解 $\dfrac{8^x+27^x}{12^x+18^x}=\dfrac{61}{36}$
これを求めよ.

この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 
PAGE TOP