平方根の方程式 - 質問解決D.B.(データベース)

平方根の方程式

問題文全文(内容文):
方程式を解け.$x$は正の実数である.

$x+\sqrt{x(x+1)}+\sqrt{x(x+2)}+$
$\sqrt{(x+1)(x+2)}=2$
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式を解け.$x$は正の実数である.

$x+\sqrt{x(x+1)}+\sqrt{x(x+2)}+$
$\sqrt{(x+1)(x+2)}=2$
投稿日:2020.12.04

<関連動画>

因数分解

アイキャッチ画像
単元: #数と式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^{2}bd+bc^{2}-ab^{2}-acd^{2}$
因数分解しなさい

東北学院大過去問
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

アイキャッチ画像
単元: #平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。

2021明治大学全統過去問
この動画を見る 

高校数学:数Ⅰ:図形と計量:三角比への応用:「三角形の形状」の考え方!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$\sin A=\cos B\sin C$が成り立つとき,この三角形はどのような形をしているか。
$△ABC$において,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) $a\sin A=b\sin B$
(2) $\sin A=2\cos B\sin C$
(3) $a\cos A=b\cos B$
この動画を見る 

2022乗 昭和学院秀英2022入試問題解説12問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 5 + 2)^{2022}(\sqrt 5 -2)^{2020}+(\sqrt 5 +2)^{2020}(\sqrt 5 -2)^{2022}$

2022昭和学院秀英高等学校
この動画を見る 

【数Ⅰ】【2次関数】2次関数の解の範囲 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
  (1)  x²+2mx+3=0       (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
  (1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
  (1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
  (2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
この動画を見る 
PAGE TOP