東明館高校 立方体と外接球 - 質問解決D.B.(データベース)

東明館高校 立方体と外接球

問題文全文(内容文):
立方体の外接球の体積=?
*図は動画内参照

東明館高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#立体図形#立体図形その他#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
立方体の外接球の体積=?
*図は動画内参照

東明館高等学校
投稿日:2021.08.10

<関連動画>

硬貨を使って250円にする方法は何通り? 初芝富田林

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
10円,50円,100円の硬貨を使って250円にする方法は全部で何通り?
(1枚も使わない硬貨があってもよい)

2023初芝富田林高等学校
この動画を見る 

ドーナツは何回食べても美味しい 神戸国際大附属

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積=20π
AB=?
*図は動画内参照

神戸国際大学附属高等学校
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題4。整数解の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第4問 
(1)$5^4=625$を$2^4$で割った時の余りは1に等しい。このことを用いると、不定方程式

$5^4x-2^4y=1 \ldots①$
の整数解のうち、xが正の整数で最小になるのは$x=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }$であることがわかる。
また、①の整数解のうち、xが2桁の正の整数で最小になるのは
$x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ }$である。

(2)次に、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りについて考えてみよう。
まず、
$625^2=5^{\boxed{ケ}}$
であり、また$m=\boxed{\ \ イウ\ \ }$とすると、$625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1$である。
これらにより、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りがわかる。

(3)(2)の考察は、不定方程式
$5^5x-2^5y=1 \ldots②$
の整数解を調べるために利用できる。x,yを②の整数解とする。
$5^5x$は$5^5$の倍数であり、$2^5$で割った時の余りは1となる。よって(2)により、
$5^5x-625^2$は$5^5$でも$2^5$でも割り切れる。$5^5$と$2^5$は互いに素なので
$5^5x-625^2$は$5^5・2^5$の倍数である。このことから、②の整数解のうち、
xが3桁の正の整数で最小になるのは
$x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }$
であることが分かる。

(4)$11^4$を$2^4$で割った時の余りは1に等しい。不定方程式
$11^5x-2^5y=1$
の整数解のうち、xが正の整数で最小になるのは
$x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ }$ である。

2022共通テスト数学過去問
この動画を見る 

【考え方が大切…!】二次方程式:山口県~全国入試問題解法

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
差が$1$である大小$2$つの正の数がある。これらの積が$3$であるとき
$2$つの数のうち大きい方を求めなさい
この動画を見る 

これ解ける?

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
コインを10回投げて表がぴったり5回出る確率は?
この動画を見る 
PAGE TOP