問題文全文(内容文):
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$
【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$
【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$
【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$
【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
投稿日:2013.03.13