問題文全文(内容文):
$f(x)=x^2+ax+3$
$g(x)=f(x)f \left(\dfrac{1}{x}\right),x\neq 0$である.
$g(x)$の最小値が負となる$a$の範囲を求めよ.
2015富山大過去問
$f(x)=x^2+ax+3$
$g(x)=f(x)f \left(\dfrac{1}{x}\right),x\neq 0$である.
$g(x)$の最小値が負となる$a$の範囲を求めよ.
2015富山大過去問
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^2+ax+3$
$g(x)=f(x)f \left(\dfrac{1}{x}\right),x\neq 0$である.
$g(x)$の最小値が負となる$a$の範囲を求めよ.
2015富山大過去問
$f(x)=x^2+ax+3$
$g(x)=f(x)f \left(\dfrac{1}{x}\right),x\neq 0$である.
$g(x)$の最小値が負となる$a$の範囲を求めよ.
2015富山大過去問
投稿日:2020.08.27