高校への数学執筆者 秋田洋和先生が解説!!(岡山県) - 質問解決D.B.(データベース)

高校への数学執筆者 秋田洋和先生が解説!!(岡山県)

問題文全文(内容文):
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。

岡山県
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。

岡山県
投稿日:2021.07.08

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(1)〜素因数分解と変数の値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式X=6$a^3bc$+11$a^2b^2c$+3$ab^3c$がある。
(i)Xを因数分解するとX=$\boxed{\ \ ア\ \ }$である。
(ii)X=6270 を満たす(a,b,c)の組を全て求めると、(a,b,c)=$\boxed{\ \ イ\ \ }$である。ただし、a,b,cはそれぞれ2以上の整数とする。

2023慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜剰余類と合同式を練習だ〜早稲田大学2023年商学部第3問〜7で割り切れる条件と91で割り切れる条件

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $n$を正の整数とする。次の設問に答えよ。
(1)$n^2$+$n$+1が7で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
(2)$n^2$+$n$+1が91で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
この動画を見る 

整数問題 あれを使えばスッキリ解決

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bが互いに素ならば、abとa²-b²も互いに素であることを示せ
この動画を見る 

【高校数学】整数の割り算~商と余りについての理解~ 5-5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,bは整数とする。aを5で割ると2余り、bを5で割ると4余る。
このとき、次の数を5で割ったときの余りを求めよ。

(1) a+b

(2) a-b

(3) ab
この動画を見る 

整数問題 千葉大(類)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N!$の下8桁は0で下9桁に初めて0以外の数が現れる.
最小の$N$とそのときの9桁目の数を求めよ.

千葉大(類)過去問
この動画を見る 
PAGE TOP