問題文全文(内容文):
xy平面上の放物線$y=x^2$上の3点P,Q,Rが次の条件をみたしている。
△PQRは一辺の長さがaの正三角形であり、点P,Qを通る直線の傾きは$\sqrt2$である。
このとき、aの値を求めよ。
xy平面上の放物線$y=x^2$上の3点P,Q,Rが次の条件をみたしている。
△PQRは一辺の長さがaの正三角形であり、点P,Qを通る直線の傾きは$\sqrt2$である。
このとき、aの値を求めよ。
チャプター:
0:00 オープニング
0:55 問題の分析と方針
3:40 解答の流れの確認
7:20 直線の傾き=変化の割合
12:10 tanの加法定理
20:10 まとめ
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
xy平面上の放物線$y=x^2$上の3点P,Q,Rが次の条件をみたしている。
△PQRは一辺の長さがaの正三角形であり、点P,Qを通る直線の傾きは$\sqrt2$である。
このとき、aの値を求めよ。
xy平面上の放物線$y=x^2$上の3点P,Q,Rが次の条件をみたしている。
△PQRは一辺の長さがaの正三角形であり、点P,Qを通る直線の傾きは$\sqrt2$である。
このとき、aの値を求めよ。
投稿日:2021.08.10