【理数個別の過去問解説】2004年度東京大学 数学 理系第1問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2004年度東京大学 数学 理系第1問解説

問題文全文(内容文):
xy平面上の放物線$y=x^2$上の3点P,Q,Rが次の条件をみたしている。
△PQRは一辺の長さがaの正三角形であり、点P,Qを通る直線の傾きは$\sqrt2$である。
このとき、aの値を求めよ。
チャプター:

0:00 オープニング
0:55 問題の分析と方針
3:40 解答の流れの確認
7:20 直線の傾き=変化の割合
12:10 tanの加法定理
20:10 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の放物線$y=x^2$上の3点P,Q,Rが次の条件をみたしている。
△PQRは一辺の長さがaの正三角形であり、点P,Qを通る直線の傾きは$\sqrt2$である。
このとき、aの値を求めよ。
投稿日:2021.08.10

<関連動画>

二重根号にビビるな! 東京電機大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt x = \sqrt {17 + \sqrt {253}} - \sqrt {17 - \sqrt {253}}$
整数xを求めよ

東京電機大学
この動画を見る 

#南山大学2021#定積分_32

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ 2 }} x\sqrt{ 4-x^2 } dx$

出典:2021年南山大学
この動画を見る 

約数の個数とその総和 2024明大中野

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
・正の約数を3個だけ持つ
・その約数の総和は871
この自然数を求めよ。

2024明治大学付属中野高等学校
この動画を見る 

指数方程式の解の配置 弘前大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x-2^{x+1}a+8a-15=0$の解が次の条件を満たす$a$の範囲を求めよ.
(1)ただ1つの実数解をもつとき
(2)相異なる2つの実数解がともに1以上のとき

弘前大過去問
この動画を見る 

福田の数学〜東北大学2023年文系第1問〜三角形の面積と内接円と外接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#三角関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。

2023東北大学文系過去問
この動画を見る 
PAGE TOP