福田の数学〜一橋大学2023年文系第5問〜反復試行の確率 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2023年文系第5問〜反復試行の確率

問題文全文(内容文):
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。

2023一橋大学文系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。

2023一橋大学文系過去問
投稿日:2023.05.30

<関連動画>

福田の数学〜慶應義塾大学2023年医学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数とする。A君とB君の2人が以下の試合Tをnセット行い、それぞれが得点をためていくとする。
試合T:2人で腕ずもうを繰り返し行う。毎回、A君, B君のどちらも勝つ確率は$\frac{1}{2}$ずつである。どちらかが先に2勝したら、腕ずもうを行うのをやめる。2勝0敗の者は2点を、2勝1敗の者は1点を得る。2勝しなかった者の得点は0点である。
A君が1セット目からnセットまでに得た点の合計を$a_n$とし、B君が1セット目からnセットまでに得た点の合計を$b_n$とする。
(1)n=1とする。$a_1$=2である確率は$\boxed{\ \ あ\ \ }$であり、$a_1$=1である確率は$\boxed{\ \ い\ \ }$である。
(2)n≧4とする。試合Tをnセット行ううち、A君が2点を得るのがちょうど2セット、かつ1点を得るのがちょうど2セットである確率は$\frac{\boxed{\ \ う\ \ }}{\boxed{\ \ え\ \ }}$である。
(3)n≧2とする。$a_n$=$n$+2かつ$b_n$=0である確率は$\frac{\boxed{\ \ お\ \ }}{\boxed{\ \ か\ \ }}$である。
(4)$a_n$=2である確率は$\frac{\boxed{\ \ き\ \ }}{\boxed{\ \ く\ \ }}$である。
(5)n=4とする。$a_4$>$b_4$である確率は$\frac{\boxed{\ \ け\ \ }}{\boxed{\ \ こ\ \ }}$である。

2023慶應義塾大学医学部過去問
この動画を見る 

【高校数学】組合わせの性質の証明 1-10.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
組合わせの性質の証明についての説明動画です
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数
を順に$\alpha,\beta,\gamma$とする。3次関数
$f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
を考える。
(1)関数$y=f(x)$が極値をとらない確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(2)関数$y=f(x)$が極大値をとるとき、その極大値の取り得る値のうち最小のもの
は$\boxed{\ \ ニ\ \ }$で、最大のものは$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$である。
(3)関数$y=f(x)$が極大値$\boxed{\ \ ニ\ \ }$をとる確率は$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。
(4)関数$y=f(x)$が極大値$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$を取る確率は$\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}$である。

2021上智大学文系過去問
この動画を見る 

場合の数、具体的に求める?一般的に求める?

アイキャッチ画像
単元: #場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
n人を3つのグループに分ける。それぞれ何通りか?
・0人は不可
・グループに名前はない
・個人は区別する
(1)n=4
(2)n=5
(3)n=6
(4)n=k
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{1}$ 次の$\square$にあてはまる適切な数値を解答欄に記入せよ。
袋$A$には赤玉$3$個、白玉$1$個、袋$B$には赤玉$1$個、白玉$3$個が入っている。
「袋$A$から$2$個の玉を取り出して袋$B$に入れ、次に袋$B$から$2$個の玉を取り出して袋$A$に入れる」という操作を繰り返す。$1$回の操作の後、袋$A$に白玉が$2$個以上ある確率は$\fbox{ア}$、$2$回の操作の後、袋$A$の中が白玉だけになる確率は$\fbox{イ}$である。
この動画を見る 
PAGE TOP