約数の総積 数学オリンピック予選 - 質問解決D.B.(データベース)

約数の総積 数学オリンピック予選

問題文全文(内容文):
正の約数すべての積が$24^{240}$とんる自然数をすべて求めよ.

数学オリンピック過去問
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の約数すべての積が$24^{240}$とんる自然数をすべて求めよ.

数学オリンピック過去問
投稿日:2020.05.06

<関連動画>

整数問題 一橋大 令和四年

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^a3^b+2^c3^d = 2022$を満たす0以上の整数a,b,c,dの組を求めよ。

2022一橋大学
この動画を見る 

【理数個別の過去問解説】2007年度千葉大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは奇数とする。このとき、次のことを証明せよ。
(1)n²-1は8の倍数である。
(2)n⁵-nは3の倍数である。
(3)n⁵-nは120の倍数である。
千葉大学(文理共通)2007年第2問より
この動画を見る 

素数問題の良問だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは素数である.
$p^3-q^5=(p+q)^2$を満たす(p,q)の組をすべて求めよ.
この動画を見る 

福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る 

整数問題 関西大高

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$1 \times 2 \times 3 \times \cdots \times n$を1000で割り切れるような自然数nのうち最も小さいものは?

関西大学高等部
この動画を見る 
PAGE TOP