合同式 数学的帰納法 東工大 - 質問解決D.B.(データベース)

合同式 数学的帰納法 東工大

問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
投稿日:2020.04.22

<関連動画>

名古屋大 約数の総和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2016$の約数
{$1,2,3,…,2016$}の中で約数の総和が$2016$になるものを全て求めよ

出典:2016年名古屋大学 過去問
この動画を見る 

4次式の整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$n^4-4n^3+22n^2-36n+18=N^2$
が平方数となるnをすべて求めよ
この動画を見る 

数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。

出典:2001年数学オリンピック 予選問題
この動画を見る 

【良問】京大の整数問題!2つの解法で解きます!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n^3-7n+9$が素数となるような整数$n$を全て求めよ。

京都大過去問
この動画を見る 

京大の整数問題!落としてはいけない問題です!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2以上の自然数$n$に対し、$n$と$n^2+2$がともに素数になるのは、$n=3$の場合に限ることを示せ。

京都大過去問
この動画を見る 
PAGE TOP