問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+y^2-4(a+1)x-2ay+5a^2+
8a+3=0 \\
x^2=y^2
\end{array}
\right.
\end{eqnarray}$
が4つの解をもつ$a$を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+y^2-4(a+1)x-2ay+5a^2+
8a+3=0 \\
x^2=y^2
\end{array}
\right.
\end{eqnarray}$
が4つの解をもつ$a$を求めよ.
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+y^2-4(a+1)x-2ay+5a^2+
8a+3=0 \\
x^2=y^2
\end{array}
\right.
\end{eqnarray}$
が4つの解をもつ$a$を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+y^2-4(a+1)x-2ay+5a^2+
8a+3=0 \\
x^2=y^2
\end{array}
\right.
\end{eqnarray}$
が4つの解をもつ$a$を求めよ.
投稿日:2020.04.10