問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.
(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.
(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
チャプター:
0:00 オープニング
0:05 問題文
0:18 問題解説、手順①(OAの係数をx、OBの係数をyとおく)
0:40 問題解説、手順②(s=x、t=yとして条件式をxとyの式に)
0:57 問題解説、手順③(②の条件式を図示する)
2:17 問題解説、手順④(y軸を斜めにして描き直す)
2:47 問題解説、手順⑤(OA'とOB'をそれぞれOAとOBで表す)
3:45 名言
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.
(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.
(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
投稿日:2020.06.02