【数B】空間ベクトル:軸/平面に関して対称な点の考え方 - 質問解決D.B.(データベース)

【数B】空間ベクトル:軸/平面に関して対称な点の考え方

問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説(1)
0:54 問題解説(2)+○○対称の考え方
2:37 今回のポイント:○○対称の考え方
2:47 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
投稿日:2020.10.21

<関連動画>

福田の数学〜東京医科歯科大学2024医学部第2問〜ベクトルの勾配と無理不等式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{2} xyz$ 空間において、点$\mathrm{ A }( 1, 0, 0 )$, $\mathrm{ B }(0, 1, 0)$, $\mathrm{ C }(-1, 0, 0)$, $\mathrm{ D }(0, 0, 1)$ をとり、線分 $\mathrm{ CD }$の中点を$\mathrm{ M }$とする。さらに、$\mathrm{ N }$を線分$\mathrm{ BD }$上の点とする。また、$z$軸と平行でない直線上の異なる2点$\mathrm{ P }(x, y, z), \mathrm{ Q }(x', y', z')$ に対して
$\frac{z' - z}{\sqrt{(x' - x) ^ 2 + (y' - y) ^ 2}}$をベクトル$\overrightarrow{ \mathrm{ PQ } }$の勾配と呼ぶ。$\overrightarrow{ \mathrm{ AN } }$の勾配を$t_1$、$\overrightarrow{ \mathrm{ NM } }$の勾配を$t_2$とするとき、
以下の各問いに答えよ。
(1) $t_2 = 0$ となるように$\mathrm{ N }$をとったとき、$t_1$の値を求めよ。
(2) $l = |\overrightarrow{ \mathrm{ AN } }|+|\overrightarrow{ \mathrm{ NM } }|$とし、$l$が最小となるように$\mathrm{ N }$をとったとき、$l$の値を求めよ。
(3) $0 \leqq t_{2} \leqq t_{1}$ となるように$\mathrm{ N }$をとったとき、$\mathrm{ N }$の$y$座標を$s$とする。$s$がとりうる値の範囲を求めよ。
この動画を見る 

【数C】【空間ベクトル】a=(0,1,2)、b=(2,4,6)とする。x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,xをベクトルとする。
a=(0,1,2)、b=(2,4,6)とする。
x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。
この動画を見る 

福田の数学〜早稲田大学2024商学部第3問〜空間の中の2つの三角形の面積の和の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3 座標空間において、4点をA(0, 0, 2), B(-1, 0, 4), C(1, 1, 0), D(0, 0, 1) とする。次の問いに答えよ。
(1) Pを直線AB上の点とするとき、三角形PCDの面積の最小値を求めよ。
(2) Q,Rを直線 CD上のとし、QR = √3とする。三角形QABの面積と三角形 RAB の面積の和の最小値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$tを実数とする。また、Oを原点とする座標空間内に
3点$A(4,2,5),\ B(-1,1,1),\ C(2-t,4-3t,6+2t)$をとる。
(1)$\triangle OAB$の面積を求めよ。
(2)4点O,A,B,Cが同一平面上にあるとき、Cの座標を求めよ。
(3)点Cがxy平面上にあるとき、四面体OABCの体積Vを求めよ。
(4)四面体OABCの体積が(3)で求めたVの3倍となるようなtの値を
すべて求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2024環境情報学部第3問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
四面体 $\mathrm{ABCD}$ において、$|\overrightarrow{\mathrm{AB}}| = 3,$ $|\overrightarrow{\mathrm{AC}}|$ $=|\overrightarrow{\mathrm{AD}}|$$= |\overrightarrow{\mathrm{BC}}|$$=|\overrightarrow{\mathrm{BD}}|=4,$$|\overrightarrow{\mathrm{CD}}|=5$であるとき $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$ $=\frac{\fbox{アイ}}{\fbox{ウエ}},$ $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$ $=\frac{\fbox{オカ}}{\fbox{キク}},$ $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BD}}$$=\frac{\fbox{ケコ}}{\fbox{サシ}}$
ここで、頂点 $\mathrm{D}$ から $\triangle \mathrm{ABC}$ に下した垂線の足を $\mathrm{H}$ とすると、$\overrightarrow{\mathrm{AH}}$ は $\overrightarrow{\mathrm{AB}}$ と $\overrightarrow{\mathrm{AC}}$ を用いて
$\overrightarrow{\mathrm{AH}}$ $=\frac{\fbox{スセ}}{\fbox{ソタ}} \overrightarrow{\mathrm{AB}}$ $+ \frac{\fbox{チツ}}{\fbox{テト}}\overrightarrow{\mathrm{AC}}$ とあらわすことができる。
垂線 $\mathrm{DH}$ の長さは $\frac{\fbox{ナニ}}{\fbox{ヌネ}}\sqrt{\fbox{ノハ}}$ であるから、四面体 $\mathrm{ABCD}$ の体積は $\frac{\fbox{ヒフ}}{\fbox{ヘホ}}\sqrt{\fbox{マミ}}$ である。
この動画を見る 
PAGE TOP