正十二角形の中の三角形の個数 - 質問解決D.B.(データベース)

正十二角形の中の三角形の個数

問題文全文(内容文):
正十二角形の3つの頂点を結んでできる三角形の個数は$\boxed{ア}$コである。
そのうち
・2辺を共有する三角形は$\boxed{イ}$コ
・1辺を共有する三角形は$\boxed{ウ}$コ
・辺を共有しない三角形は$\boxed{エ}$コ
・直角三角形は$\boxed{オ}$コ
・正三角形は$\boxed{カ}$コ
・二等辺三角形は$\boxed{キ}$コ
ある。
*図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正十二角形の3つの頂点を結んでできる三角形の個数は$\boxed{ア}$コである。
そのうち
・2辺を共有する三角形は$\boxed{イ}$コ
・1辺を共有する三角形は$\boxed{ウ}$コ
・辺を共有しない三角形は$\boxed{エ}$コ
・直角三角形は$\boxed{オ}$コ
・正三角形は$\boxed{カ}$コ
・二等辺三角形は$\boxed{キ}$コ
ある。
*図は動画内参照
投稿日:2021.04.28

<関連動画>

バーゼル問題 出題されてから91年後にオイラーが解決

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$n\to \infty$とする.
$\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+・・・・+\dfrac{1}{n^2}=\dfrac{\boxed{?}}{6}$
この動画を見る 

空間上の3本の直線

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
空間内の3本の直線l,m,nに対して、l⊥m、かつl⊥nならば、
常にm$/\!/$n
この動画を見る 

もっちゃんとオイラーの公式を学ぶ 数学の魔術師も出演

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
$e^{i \pi}=-1$
この動画を見る 

【高校数学】立体の問題のポイント・重要公式集【コツさえつかめば怖くない!】

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】立体の問題のポイント・重要公式集
-----------------
1⃣
球の中に正四面体ABCDが内接している。
正四面体ABCDの一辺の長さをaとし、球の半径をRとするとき、Rをaを用いて示しなさい。

2⃣
正四面体ABCDに球が内接している。
このとき、球の半径rをaを用いて表しなさい。
この動画を見る 

嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#恒等式・等式・不等式の証明#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式 説明動画です
この動画を見る 
PAGE TOP