問題文全文(内容文):
①
$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ
②
$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
①
$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ
②
$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①
$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ
②
$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
①
$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ
②
$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
投稿日:2021.06.04