【数B】ベクトルの大きさ、単位ベクトルとは?? - 質問解決D.B.(データベース)

【数B】ベクトルの大きさ、単位ベクトルとは??

問題文全文(内容文):
$\vert \overrightarrow{a}\vert=5$である$\overrightarrow{a}$がある。
(1) $\overrightarrow{a}$と同じ向きの単位ベクトルを、$\overrightarrow{a}$を用いて表せ。
(2) $\overrightarrow{a}$と平行で、大きさが3のベクトルを、$\overrightarrow{a}$を用いて表せ。
チャプター:

00:00 問題文
00:09 「大きさ」とは?
00:22 (1)の解説
01:40 (2)の解説

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vert \overrightarrow{a}\vert=5$である$\overrightarrow{a}$がある。
(1) $\overrightarrow{a}$と同じ向きの単位ベクトルを、$\overrightarrow{a}$を用いて表せ。
(2) $\overrightarrow{a}$と平行で、大きさが3のベクトルを、$\overrightarrow{a}$を用いて表せ。
投稿日:2022.08.30

<関連動画>

福田の数学〜九州大学2025理系第1問〜平面に垂直なベクトルの絶対値の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

座標空間内の$3$点$A(1,1,-5),B(-1,-1,7),C(1,-1,3)$を

通る平面を$\alpha$とする。

点$P(a,b,t)$を通り$\alpha$に垂直な直線と

$xy$平面との交点を$Q$とする。

(1)点$Q$の座標を求めよ。

(2)$t$がすべての実数値をとって変化するときの

$OQ$の最小値が$1$以下となるような

$a,b$の条件を求めよ。

ただし、$O$は原点である。

$2025$年九州大学理系過去問題
この動画を見る 

【数B】ベクトル:ベクトルの大きさを自由自在に扱おう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題617
$\vec{a}=(2,-1)$について、
(1)$\vec{a}$と平行な単位ベクトルを求めよ。
(2)$\vec{a}$と同じ向きで、大きさが5である$\vec{b}$を求めよ。
この動画を見る 

【数C】ベクトルの基本⑬内心ベクトルの求め方

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
角A=60°,AB=8,AC=5である三角形ABCの内心をIとする。AB=b,AC=cとするときAIをb,cを用いて表せ
この動画を見る 

福田の1.5倍速演習〜合格する重要問題008〜神戸大学文系数学第1問〜対称式と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#図形と方程式#解と判別式・解と係数の関係#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
s,tを$s \lt t$をみたす実数とする。座標平面上の3点$A(1,2),B(s,s^2),C(t,t^2)$が一直線上にあるとする。以下の問いに答えよ。
(1)sとtの関係式を求めよ。
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。

神戸大学文系過去問
この動画を見る 

【数C】ベクトル:2021年高3第1回駿台全国模試 (文系)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=1、OB=2、∠AOB=θ(0<θ<π)であるとする。
∠AOBの二等分線と 辺ABの交点をCとするとき、直線OC上の点Pは (a・p)²-2(b・p)+4=0 を満たすと する。
ただし、a=OA、b=OB、p=OPとする。次の問に答えよ。

(1)OCをa,bで表せ。
(2)pをa,b,θで表せ。
(3)b・pの値を求めよ。
(4)Pから直線OAに下ろした垂線と直 線OAとの交点をHとするとき、OH・p=b・pであることを示せ。
この動画を見る 
PAGE TOP