ピザを切れ!! B 中大横浜2021 - 質問解決D.B.(データベース)

ピザを切れ!!  B 中大横浜2021

問題文全文(内容文):
正八角形の面積=?
*図は動画内参照

2021中央大学附属横浜高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正八角形の面積=?
*図は動画内参照

2021中央大学附属横浜高等学校
投稿日:2021.02.27

<関連動画>

千葉大(医)整数問題 良問再投稿

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):

$3^n=k^3+1$


$3^n=k^2-40$
$k,n$自然数

出典:千葉大学大学院医学研究院・医学部 過去問
この動画を見る 

福田のおもしろ数学312〜三角形の内角と辺の長さに成り立つ不等式の証明

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle $ABCにおいて$60 \leqq \frac{aA+bB+cC}{a+b+c} \lt 90$が成り立つことを証明してください。ただし、A,B,Cは度数法で表されているものとする。
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

整数問題 修道高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
n(n+1)が88の倍数になるような正の整数nのうち最小のものは?

修道高等学校
この動画を見る 

六角形バリアは不可能じゃね?

アイキャッチ画像
単元: #図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
葬送のフリーレンのバリアなどで六角形で球を作っている件に関して解説していきます。
この動画を見る 
PAGE TOP