【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(1) - 質問解決D.B.(データベース)

【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(1)

問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2) $\log_{10}x+2\log_{10}y$ の最大値
  (3) $\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
チャプター:

0:00 オープニング
0:20 (1)の問題分析
1:32 最小値の求め方
3:10 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2) $\log_{10}x+2\log_{10}y$ の最大値
  (3) $\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
備考:【数Ⅰ】明治大学経営学部(2019年)数学第3問 ①
https://youtu.be/iOXnwxxf_ZI

【数Ⅱ】明治大学経営学部入試問題2019年数学第3問②
https://youtu.be/hM41zIUOtdw

【数Ⅱ】明治大学経営学部入試問題2019年数学第3問③
https://youtu.be/sfECgtn4R74
投稿日:2022.03.18

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(1)点O$を中心とする$半径1$の円に内接する$三角形ABC$において
$-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }$
が成り立っているとする。また$直線OA$と$直線BC$の交点を$P$とする。
このとき$線分BC,OP$の長さを求めると$BC=\boxed{\ \ (あ)\ \ },$$OP=\boxed{\ \ (い)\ \ }$である。さらに$三角形ABC$の面積は$\boxed{\ \ (う)\ \ }$である。


2021慶應義塾大学医学部過去問
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第1問〜不定方程式の整数解の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Kを3より大きい奇数とし、$l+m+n=K$を満たす正の奇数の組(l,m,n)
の個数Nを考える。ただし、例えば、$K=5$のとき、$(l,m,n)=(1,1,3)$
と$(l,m,n)=(1,3,1)$とは異なる組とみなす。
(1)$K=99$のとき、Nを求めよ。
(2)$K=99$のとき、l,m,nの中に同じ奇数を2つ以上含む組(l,m,n)の個数を
求めよ。
(3)$N \gt K$を満たす最小のKを求めよ。

2022東北大学理系過去問
この動画を見る 

福田のおもしろ数学081〜京大の珍問奇問〜分母の有理化

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$ を有理化せよ。
この動画を見る 

大学入試問題#379「計算が大変そうだが・・・」 同志社大学2011 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2+5}{(x+1)^2(x-2)} dx$

出典:2011年同志社大学 入試問題
この動画を見る 

福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り

(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.

(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.

2021中央大理工学部過去問
この動画を見る 
PAGE TOP