【数学B/平面ベクトル】ベクトルの内積(公式と使い方) - 質問解決D.B.(データベース)

【数学B/平面ベクトル】ベクトルの内積(公式と使い方)

問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$について、$\vec{ a }$と$\vec{ b }$の内積を求めよ。
(1)$|\vec{ a }|=2,|\vec{ b }|=3,\theta=45^{ \circ }$
(2)$|\vec{ a }|=1,|\vec{ b }|=4,\theta=150^{ \circ }$
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$について、$\vec{ a }$と$\vec{ b }$の内積を求めよ。
(1)$|\vec{ a }|=2,|\vec{ b }|=3,\theta=45^{ \circ }$
(2)$|\vec{ a }|=1,|\vec{ b }|=4,\theta=150^{ \circ }$
投稿日:2022.01.12

<関連動画>

数学「大学入試良問集」【14−6ベクトル方程式と領域図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。

(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
 (a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
 (b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$

(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第2問(1)〜正六角形の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)一辺の長さが2の正六角形ABCDEFにおいて、辺CDの中点をMとし、直線BEと直線AMの交点をPとする。このとき、$\overrightarrow{BC}$, $\overrightarrow{AM}$, $\overrightarrow{BP}$をそれぞれ$\overrightarrow{AB}$, $\overrightarrow{AF}$を用いて表すと$\overrightarrow{BC}$=$\boxed{\ \ ク\ \ }$, $\overrightarrow{AM}$=$\boxed{\ \ ケ\ \ }$, $\overrightarrow{BP}$=$\boxed{\ \ コ\ \ }$である。また、$\overrightarrow{AM}$と$\overrightarrow{BP}$の内積$\overrightarrow{AM}・\overrightarrow{BP}$の値は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

【高校数学】 数B-46 位置ベクトルと図形②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①四面体$OABC$がある.
線分$AB$を$1:2$に内分する点を$D$,線分$BC$の中点を$E$とする.
線分$AE$と線分$CD$の交点を$P$とするとき,
$\overrightarrow{OP}$を$\overrightarrow{OA}=\large{\overrightarrow{a}},\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC}=\large{\overrightarrow{c}}$を用いて表そう.
この動画を見る 

【高校数学】 数B-18 ベクトルの内積⑦

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ AB }=(a,b),\overrightarrow{ AC }=(c,d)$とすると、△ABCの面積は
△ABC=①____________=②________

◎次の三角形ABCの面積を求めよう。

③$| \vec{ AB } |=6,| \vec{ AC } |=4,\overrightarrow{ AB }・\overrightarrow{ AC }=16$

④$A(2.8)、B(0,-2)、C(6.4)$
この動画を見る 

【数B】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年高2第2回駿台全国模試第7問解説してみた!
この動画を見る 
PAGE TOP