瞬殺!!三角形の面積二等分 慶應義塾 - 質問解決D.B.(データベース)

瞬殺!!三角形の面積二等分  慶應義塾

問題文全文(内容文):
△OABの面積を二等分するx軸に平行な直線の式を求めよ。
*図は動画内参照

慶應義塾高等学校
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△OABの面積を二等分するx軸に平行な直線の式を求めよ。
*図は動画内参照

慶應義塾高等学校
投稿日:2021.01.19

<関連動画>

良問だぜ!自画自賛

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
この動画を見る 

長方形の分割  江戸川学園取手

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
三角形CDPの面積=?
*図は動画内参照
この動画を見る 

北海道大 整数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+14$が平方数となるような$n$(自然数)をすべて求めよ

出典:北海道大学 過去問
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。\\
・点Oは辺AB上にある。\\
・点Pは正六角形ABCDFの内部にある。\\
・点Qは線分CP上にある。\\
・三角形OCPと三角形OQFは共に正三角形である。\\
\\
(1)四角形OQPFに着目すると、\angle OFQ=\angle OPQより、\\
OQPFは円に内接する四角形なので、\angle OPF=\boxed{\ \ アイ\ \ }°とわかる。\\
\\
(2)AB //FCに着目すると、\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}である。OC//FP\\
であることに着目すると、\triangle OCP=\triangle OCFなので、OC^2=\boxed{\ \ オ\ \ }とわかる。\\
また、OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }\ である。\\
\\
(3)OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}であり、\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }\\
とおくと、tはt^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0を満たす。
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

補助線引けるかな?

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 
PAGE TOP