【数学】数学オリンピックの組み合わせ論の問題、見方を教えます! - 質問解決D.B.(データベース)

【数学】数学オリンピックの組み合わせ論の問題、見方を教えます!

問題文全文(内容文):
1998×2002マスのマス目があり、黒と白の市松模様に塗られている。マス目に0か1を書き加えたところ、各行・各列に1が書かれた個数は奇数個であった。このとき白マスの1は偶数個あることを示せ。
チャプター:

00:00問題
00:15問題の説明・考え方について
01:19解答

単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 理数個別チャンネル
問題文全文(内容文):
1998×2002マスのマス目があり、黒と白の市松模様に塗られている。マス目に0か1を書き加えたところ、各行・各列に1が書かれた個数は奇数個であった。このとき白マスの1は偶数個あることを示せ。
投稿日:2022.04.08

<関連動画>

アルゼンチンの数学オリンピック

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は素数であり,$p^5+p^3+2=q^2-q$
$(p,q)$をすべて求めよ.

この動画を見る 

場合の数 数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2001$個の自然数$1,2,3…,2001$の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は$0$とする。)

出典:数学オリンピック 予選問題
この動画を見る 

オーストラリア数学オリンピックAustralian math Olypmpiad

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{13}+2^{10}+2^x=y^2$
自然数x,yを求めよ.

オーストラリア数学オリンピック過去問
この動画を見る 

福田のおもしろ数学015〜ジュニア数学オリンピック本戦問題〜2つの式を満たす4つの自然数を求める

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=cd \\
c+d=ab\end{array}
\right.
\end{eqnarray}

を満たす正の整数 a,b,c,dは?

ジュニア数学オリンピック過去問
この動画を見る 

約数の総積 数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の約数すべての積が$24^{240}$とんる自然数をすべて求めよ.

数学オリンピック過去問
この動画を見る 
PAGE TOP