問題文全文(内容文):
■問題文
直径が2である円Oにおいて、1つの直径ABをBの方に延長して、BC=2ABとなる点Cをとる。また、Cから円Oに接線CTを引き、その接点をTとする。線分CT,ATの長さを求めよ。
右の図のように、点Aで同じ直線に接する2円O、O´がある。
この接線上のAと異なる点Bを通る1本の直線が円Oと2点C,Dで交わり, Bを通る他の直線が円 O′と2点E,Fで交わるとする。このとき, 4点 C, D, E, F は1つの円周上にあることを証明せよ。
■問題文
直径が2である円Oにおいて、1つの直径ABをBの方に延長して、BC=2ABとなる点Cをとる。また、Cから円Oに接線CTを引き、その接点をTとする。線分CT,ATの長さを求めよ。
右の図のように、点Aで同じ直線に接する2円O、O´がある。
この接線上のAと異なる点Bを通る1本の直線が円Oと2点C,Dで交わり, Bを通る他の直線が円 O′と2点E,Fで交わるとする。このとき, 4点 C, D, E, F は1つの円周上にあることを証明せよ。
チャプター:
0:00 OP
0:24 問題番号1問題文の確認
0:50 解説スタート
1:47 CTの長さを求める
2:54 ATの長さを求める
4:48 問題番号2問題文の確認
5:18 解説スタート
6:42 ED
単元:
#数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
■問題文
直径が2である円Oにおいて、1つの直径ABをBの方に延長して、BC=2ABとなる点Cをとる。また、Cから円Oに接線CTを引き、その接点をTとする。線分CT,ATの長さを求めよ。
右の図のように、点Aで同じ直線に接する2円O、O´がある。
この接線上のAと異なる点Bを通る1本の直線が円Oと2点C,Dで交わり, Bを通る他の直線が円 O′と2点E,Fで交わるとする。このとき, 4点 C, D, E, F は1つの円周上にあることを証明せよ。
■問題文
直径が2である円Oにおいて、1つの直径ABをBの方に延長して、BC=2ABとなる点Cをとる。また、Cから円Oに接線CTを引き、その接点をTとする。線分CT,ATの長さを求めよ。
右の図のように、点Aで同じ直線に接する2円O、O´がある。
この接線上のAと異なる点Bを通る1本の直線が円Oと2点C,Dで交わり, Bを通る他の直線が円 O′と2点E,Fで交わるとする。このとき, 4点 C, D, E, F は1つの円周上にあることを証明せよ。
投稿日:2023.05.10