場合の数 組み合わせ考え方の基本1 【セトリの算数がていねいに解説】 - 質問解決D.B.(データベース)

場合の数 組み合わせ考え方の基本1 【セトリの算数がていねいに解説】

問題文全文(内容文):
・5人乗りの車に5人が乗車してドライブをするとき、乗り方は何通りあるか。次の各場合について求めよ。
(1)5人全員が運転免許を持っている場合
(2)5人のうち3人だけが運転免許を持っている場合

・6個の数字0,1,2,3,4,5を使ってできる、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないこととする。
(1)6桁の整数
(2)6桁の整数で5の倍数

・5個の数字0,1,2,3,4を使ってできる3桁の整数のうち、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないものとする。
(1)偶数
(2)3の倍数
チャプター:

0:00 オープニング
0:00 第一問 
1:39 第二問 

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・5人乗りの車に5人が乗車してドライブをするとき、乗り方は何通りあるか。次の各場合について求めよ。
(1)5人全員が運転免許を持っている場合
(2)5人のうち3人だけが運転免許を持っている場合

・6個の数字0,1,2,3,4,5を使ってできる、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないこととする。
(1)6桁の整数
(2)6桁の整数で5の倍数

・5個の数字0,1,2,3,4を使ってできる3桁の整数のうち、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないものとする。
(1)偶数
(2)3の倍数
投稿日:2023.05.20

<関連動画>

【中学数学・数A】中高一貫校用問題集(代数編)確率と標本調査:確率の計算:じゃんけん A,B,Cの3人がじゃんけんを1回行うとき、次の問いに答えよう。(問題文全文は概要欄を見てね)

単元: #数学(中学生)#中3数学#数A#場合の数と確率#確率#標本調査#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,Cの3人がじゃんけんを1回行うとき、次の問いに答えよう。
(1)手の出し方は、何通りあるか求めよう。
(2)全員が同じ手を出して、引き分けとなる確率を求めよう。
(3)Aだけが勝つ確率を求めよう。
(4)1人だけが負ける確率を求めよう。
この動画を見る 

東大 場合の数 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#場合の数#場合の数#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボ ールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ 相異なる入れ方の総数を求めたい。

(1) 1からnまで異なる番号のついたこのボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(2)互いに区別のつかないn個のボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つ の箱に入れる場合、その入れ方は全部で何通りあるか。
この動画を見る 

神様の順列 記述式だけど答えだけでいいんじゃね?

アイキャッチ画像
単元: #場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023茨城大学過去問題
赤玉4個白玉5個入った袋から1個ずつ順に3個とり出す(もどさない)
3個目が白である確率
この動画を見る 

【高校数学】反復試行の確率例題~一緒に解いてもやもや解決~ 2-6.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
白玉3個、赤玉2個が入った袋から玉を1個取り出し、色を調べてから
元に戻すことを5回行うとき、次の確率を求めよ。
(a) 白玉をちょうど3回取り出す確率
(b) 5回目に3度目の赤玉を取り出す確率
(c) 5回目に初めて白玉が出る確率

-----------------

2⃣
数直線上を動く点Pが原点にある。1個のさいころを投げて、偶数の目が
出たら正の方向に1、奇数の目が出たら負の方向に1だけPを動かす。
さいころを8回投げたときのPの座標が2である確率を求めよ。

-----------------

3⃣
AとBがテニスの試合を行うとき、各ゲームでA Bが勝つ確率はそれぞれ
$\displaystyle \frac{2}{3} , \displaystyle \frac{1}{3}$あるとする。
3ゲーム先に勝った方が試合の勝者になるとき、Aが勝者になる確率を求めよ。
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
この動画を見る 
PAGE TOP