【数Ⅲ-153】定積分の置換積分法②(偶関数と奇関数) - 質問解決D.B.(データベース)

【数Ⅲ-153】定積分の置換積分法②(偶関数と奇関数)

問題文全文(内容文):
数Ⅲ(定積分の置換積分法➁・偶数関数と奇関数)
Q次の定積分を求めよ。

①$\int_{-2}^2\sqrt{4-x^2} \ dx$

➁$\int_{-\pi}^\pi\sin x\ dx$

③$\int_{-1}^1 (x^4-5x^3+4x-2)\ dx$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法➁・偶数関数と奇関数)
Q次の定積分を求めよ。

①$\int_{-2}^2\sqrt{4-x^2} \ dx$

➁$\int_{-\pi}^\pi\sin x\ dx$

③$\int_{-1}^1 (x^4-5x^3+4x-2)\ dx$
投稿日:2020.07.02

<関連動画>

大学入試問題#497「まあ、これがベターなのかな」  産業医科大学 改 (2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sqrt{ 2 }}^{\sqrt{ 3 }} x\ log(x^2-1)\ dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。

2023東京工業大学理系過去問
この動画を見る 

大学入試問題#153 東京医科大学(2017) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
実数aは正の定数とする。実数全体で定義された関数$f(x)=\frac{|x+a|}{\sqrt{x^2+1}}$について、
次の問いに答えよ。
(1)$f(x)$が$x=-a$で微分可能であるかどうか調べよ。
(2)$f(x)$の最大値が$\sqrt2$となるように、定数aの値を定めよ。
(3)定数aは(2)で定めた値とする。$y=f(x)$のグラフとx軸およびy軸で囲まれた部分
をx軸の周りに1回転させてできる立体の体積Vを求めよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

#筑波大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{2} |log\ x| dx$

出典:2016年筑波大学
この動画を見る 
PAGE TOP