大学受験過去問シリーズ!横浜国立大2019年(理系)第4問の解説 #数学 #過去問 #横浜国立大学 - 質問解決D.B.(データベース)

大学受験過去問シリーズ!横浜国立大2019年(理系)第4問の解説 #数学 #過去問 #横浜国立大学

問題文全文(内容文):
横浜国立大2019年(理系)第4問の解説していきます.
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大2019年(理系)第4問の解説していきます.
投稿日:2024.02.05

<関連動画>

数学「大学入試良問集」【2−5 相加平均・相乗平均】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の問いに答えよ。
(1)
正の実数$x,y$に対して
$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y} \geqq 2$
が成り立つことを示し、等号が成立するための条件を求めよ。

(2)
$n$を自然数とする。
$n$個の正の実数$a_1,a_2,・・・,a_n$に対して
$(a_1+・・・+a_n)\left[ \dfrac{ 1 }{ a_1 }+・・・+\displaystyle \frac{1}{a_n} \right] \geqq n^2$
が成り立つことを示し、等号が成立するための条件を求めよ。
この動画を見る 

数学「大学入試良問集」【14−1 平面ベクトルと一次独立の様々な解法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$を$3:2$に内部する点を$C$、辺$OB$を$3:4$に内分する点を$D$とする。
線分$AD$と線分$BC$との交点を$P$とする。
また、$\triangle OPA,\triangle PDB$の面積をそれぞれ$S_1,S_2$とする。

(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
(2)$S_1:S_2$を求めよ。
この動画を見る 

中央大(法)ガウス記号 対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[log_2(x+50)]=[log_2x]+3$を満たす$x$の範囲を求めよ

出典:2015年中央大学法学部 過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$4\sqrt2$の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さはそれぞれ$AB=4\sqrt6,BC=10,C=6$とする。
(1)$\cos\angle ABC=\boxed{\ \ テ\ \ }$である。平面ABCで球面Sを切った切り口の円をTとする。
Tの半径は$\boxed{\ \ ト\ \ }$である。点Dが円T上を動くとき、$\triangle DAB$の面積の最大値は
$\boxed{\ \ ナ\ \ }$である。
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは$\boxed{\ \ ニ\ \ }$である。
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は$\boxed{\ \ ヌ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
05年 山口大学

次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る 
PAGE TOP