福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 正の実数tに対し、座標平面上の2点P(0,t)とQ(\frac{1}{t},0)を考える。\hspace{80pt}\\
tが1 \leqq t \leqq 2の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 正の実数tに対し、座標平面上の2点P(0,t)とQ(\frac{1}{t},0)を考える。\hspace{80pt}\\
tが1 \leqq t \leqq 2の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。
\end{eqnarray}
投稿日:2022.04.18

<関連動画>

【2通りで解説】微分禁止!問題文から「あれ」を使う匂いがぷんぷんします【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
kを正の実数とし,二次方程式$x^{2}+x-k=0$の二つの実数解を、$\alpha,\beta$とする。
$kがk>2$の範囲を動くとき,

$\displaystyle \frac{\alpha^{3}}{1-\beta}+\displaystyle \frac{\beta^{3}}{1-\alpha}$
の最小値を求めよ。
この動画を見る 

三角関数 4STEP数Ⅱ258 三角比の相互関係3【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$sinθ+cosθ=\frac{1}{2}$のとき,次の式の値を求めよ。
(1) $\tan θ+\displaystyle \frac{1}{\tan θ}$
(2) $\tan^3 θ+\displaystyle \frac{1}{\tan^3 θ}$
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 全統高2模試 大問6_三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
θの関数。 f(θ)=1/2sin2θ-√2kcos(θ-π/4)+k² がある。ただし、kは正の定数である。
(1)sin2θ,cos(θ-π/4)のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)f(θ)を(sinθ-p)(cosθ-q) (p,qは定数)の形で表せ。 (ii)k=√3/2のとき、方程式f(θ)=0を0≦θ<2πにおいて解け。
(3)θの方程式f(θ)=0が0≦θ<2πにおいて相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式f(θ)=0の0≦θ<2πにおける最小の解をα、最大の解をβと する。α+β=5π/3となるようなkの値を求めよ。
この動画を見る 

【数Ⅱ】式と証明:二項定理の使い方編

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
①(3x+1)⁵を展開したときのx⁴の係数
②(2-x)¹⁰を展開したときのx⁷の係数 をそれぞれ求めよ。
この動画を見る 

【数Ⅱ】微分法と積分法:平均変化率について学ぼう!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・y=3x+1のxが1から4まで増加するときの変化の割合(平均変化率)は?
・y=2x²が1から4まで増加するときの変化の割合(平均変化率)は?
この動画を見る 
PAGE TOP