福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 正の実数tに対し、座標平面上の2点P(0,t)とQ(\frac{1}{t},0)を考える。\hspace{80pt}\\
tが1 \leqq t \leqq 2の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。
\end{eqnarray}

2022大阪大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 正の実数tに対し、座標平面上の2点P(0,t)とQ(\frac{1}{t},0)を考える。\hspace{80pt}\\
tが1 \leqq t \leqq 2の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。
\end{eqnarray}

2022大阪大学理系過去問
投稿日:2022.04.18

<関連動画>

山梨大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^{n+2}+4^{2n+1}$が13の倍数であることを証明
数学的帰納法以外も考えてください

出典:2008年山梨大学 過去問
この動画を見る 

高校1・2年生必見 指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\left(\dfrac{3^{\sqrt5}}{9}\right)^{\sqrt{9+4\sqrt5}}$
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第3問〜領域における最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 連立方程式\\
\left\{
\begin{array}{1}
0 \leqq y \leqq 6  \\
y \geqq -x+7 \\
y \leqq -2x+14
\end{array}
\right.\\
\\
の表す領域をDとする。\\
(1)領域Dを図示せよ。\\
(2)点(x,\ y)が領域Dを動くとき、3x+2yの最大値と最小値を求めよ。\\
(3)点(x,\ y)が領域Dを動くとき、x^2-6x+2yの最大値と最小値を求めよ。
\end{eqnarray}

2021青山学院大学理工学部過去問
この動画を見る 

積分で面積が出る理由

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
積分をするとどうして面積が出るの?

仕組みを解説します!
この動画を見る 

ただの指数方程式なんだけど

アイキャッチ画像
単元: #方程式#数Ⅱ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ xy \neq o.x,y$は有理数である.$
72^x48^y=6^{xy}$
これを解け.

数学jrオリンピック過去問
この動画を見る 
PAGE TOP