【数A】確率:期待値の巧みな利用 - 質問解決D.B.(データベース)

【数A】確率:期待値の巧みな利用

問題文全文(内容文):
【高校数学 数学A 場合の数と確率 期待値】

無限に続く階段がある。さいころを振って出た目の数だけ登っては立ち止まるということを繰り返す。このとき十分上の方のとある段に立ち止まる確率を求めよ。

(出典 上級国家公務員試験より)
チャプター:

0:00 オープニング
0:12 問題文紹介
1:10 解答解説

単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#その他#その他#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学A 場合の数と確率 期待値】

無限に続く階段がある。さいころを振って出た目の数だけ登っては立ち止まるということを繰り返す。このとき十分上の方のとある段に立ち止まる確率を求めよ。

(出典 上級国家公務員試験より)
投稿日:2021.12.01

<関連動画>

ポケモンで数学を使おう!

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ポケモンでマヒ状態かつ混乱のとき攻撃できない確率はどれくらいですか?
この動画を見る 

数学「大学入試良問集」【5−4 石の移動と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正三角形の頂点を反時計回りに$A,B,C$と名付け、ある頂点に1つの石が置いてある。
次のゲームを行う。
袋の中に黒玉3個、白玉2個の計5個の球が入っている。
この袋の中を水に2個の球を取り出して元に戻す。
この1回の試行で、もし黒玉2個の場合は反時計回りに、白玉2個の場合は時計回りに隣の頂点に石を動かす。
ただし、白玉1個と黒玉1個の場合には動かさない。
このとき、以下の問いに答えよ。
(1)
1回の試行で、黒玉2個を取り出す確率と、白玉2個を取り出す確率を求めよ。

(2)
最初に石を置いた頂点を$A$とする。
4回の試行を続けた後、石が頂点$C$にある確率を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、
授業の開始・終了などを知らせるために鳴らしている。
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間
を表している。例えば、ドミソシという音を1つずつ、
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は$\boxed{\ \ アイウ\ \ }$通り。
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)
とした場合、
チャイムの種類は合わせて$\boxed{\ \ エオカ\ \ }$通りになる。
ただし、連続する音以外は高々1回までしか鳴らすことはできず、
それらは連続する音とは異ならなければならないものとする。
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、
可能なチャイムの種類は合わせて$\boxed{\ \ キクケ\ \ }$通りになる。

2022慶應義塾大学環境情報学部過去問
この動画を見る 

【高校数学】同じものを含む順列の例題~できた方がいい問題3題~1-11.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
8人の生徒を次のようにする方法は何通りあるか。
(a)4人,3人,1人の3組分ける
(b)4人,4人の2つの組A, Bに分ける
(c)4人,4人の2組に分ける
(d)4人,2人,2人の3組に分ける
(e)2人,2人,2人,2人の4組に分ける

-----------------

2⃣
次の数は何通りか。
(a)6個の数1,1,1,2,2,3を並べてできる6桁の整数
(b)7個の数0,1,1,1,2,2,3を並べてできる7桁の整数

-----------------

3⃣
YOKOHAMAの8文字を1列に並べる
(a)異なる並べ方は何通りあるか
(b)OとAが偶数番目にある並べ方は何通りあるか
(c)Y,K,H,Mがこの順にある並べ方は何通りあるか

この動画を見る 

福田の数学〜北海道大学2023年文系第3問〜絶対値の和の最小値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#場合の数と確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ...., $a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_2$=5 となる確率を求めよ。
(2)$K_3$=5 となる確率を求めよ。
(3)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$, ...., $a_n$に関する必要十分条件を求めよ。

2023北海道大学文系過去問
この動画を見る 
PAGE TOP