【数Ⅱ】複素数と方程式:x²+x+1=0の2解をα、βとする。(1)α+β(2)α³+β³(3)α¹⁰⁰+β¹⁰⁰の値を求めよ。 - 質問解決D.B.(データベース)

【数Ⅱ】複素数と方程式:x²+x+1=0の2解をα、βとする。(1)α+β(2)α³+β³(3)α¹⁰⁰+β¹⁰⁰の値を求めよ。

問題文全文(内容文):
$x^2+x+1=0$の2解を$\alpha,\beta$とする。
(1)$\alpha+\beta$
(2)$\alpha^3+\beta^3$
(3)$\alpha^{100}+\beta^{100}$の値を求めよ。
チャプター:

0:00 オープニング 
0:22 (1),(2)の解説 
2:20 (3)100乗?? 
5:10 答案の書き方

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+x+1=0$の2解を$\alpha,\beta$とする。
(1)$\alpha+\beta$
(2)$\alpha^3+\beta^3$
(3)$\alpha^{100}+\beta^{100}$の値を求めよ。
投稿日:2021.09.26

<関連動画>

答えの数値で安心する問題 聖マリアンナ医科大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+\sqrt[3]{4}X+4=0$
の3つの解をα,β,γとする
$(10\sqrt[3]{2}-α)(10\sqrt[3]{2}-β)(10\sqrt[3]{2}-γ)$
の値を求めよ。

聖マリアンナ医科大過去問
この動画を見る 

大阪教育大 整式の剰余 複素数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\omega$を方程式$x^2+x+1-0$の解を1つとする.
$(\omega+1)^{12}$の値を求めよ.
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ.

大阪教育大過去問
この動画を見る 

17神奈川県教員採用試験(数学:8番 積分【面積の最小値】)

アイキャッチ画像
単元: #数Ⅱ#2次関数#複素数と方程式#2次関数とグラフ#微分法と積分法#解と判別式・解と係数の関係#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
8⃣$y=x^2$と(-1,3)を通る直線lで囲まれた面積Sの最小値を求めよ。
この動画を見る 

福田の数学〜立教大学2024年理学部第4問〜3次方程式の実数解と整数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$m, a, b, c, d, e, f, r, s, t$を自然数とする。このとき(1)~(5)に答えよ。ただし、(2)(3)の事実は(4)(5)で用いてよい。
(1)2次方程式$2x^2+5x+m=0$の解が有理数となるような自然数$m$をすべて求めよ。ただし、$p$が素数であるとき$\sqrt{p}$が無理数であることを用いてよい。
(2)3次方程式$x^3+ax^2+bx+c=0$の実数解は負の数であることを証明せよ。ただし、方程式$x^3+ax^2+bx+c=0$が少なくとも1つ実数解をもつことは証明せずに用いてよい。
(3)3次方程式$x^3+dx^2+ex+f=0$が整数$n$を解にもつとする。このとき$n$は$f$の約数であることを示せ。
(4)3次方程式$x^3+rx^2+rx+3=0$が整数解を少なくとも1つもつような自然数$r$をすべて求めよ。
(5)3次方程式$x^3+sx^2+tx+6=0$が異なる3つの整数を解にもつような自然数の組$(s, t)$をすべて求めよ。
この動画を見る 

練習問題18 どっかの教採の問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$f(\theta)=\sin2\theta+\sin\theta-\cos\theta+k\ (0\leqq \theta\leqq \pi)$
$f(\theta)=0$が異なる3つの解をもつような$k$の範囲を求めよ.
この動画を見る 
PAGE TOP