福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理 - 質問解決D.B.(データベース)

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
投稿日:2023.07.11

<関連動画>

20年5月数学検定準1級1次試験(数列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
3⃣$3a_n-2S_n=3^n$
$(S_n=a_1+a_2+\cdots+a_n)$
この動画を見る 

【高校数学】数Ⅲ-71 数列の極限⑦(無限等比数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a_1=1,a_{n+1}=\dfrac{1}{3}a_n+2(n=1,2,・・・)$によって
定められる数列$\{a_n\}$について、$\displaystyle \lim_{n\to\infty}a_n$を求めよ。

②$a_1=o,a_2=1,a_{n+2}=\dfrac{1}{4}(a_{n+1}+3a_n)(n=1,2,・・・)$によって
定められる数列$\{a_n\}$について、$\displaystyle \lim_{n\to\infty}a_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【13−6 連立漸化式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$

次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。

(2)
$x_n$および$y_n$を$n$の式で表せ。
この動画を見る 

背景を見破れ!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\dfrac{1}{2!9!}+\dfrac{1}{3!8!}+\dfrac{1}{4!7!}+\dfrac{1}{5!6!}=\dfrac{n}{10!}$

$\displaystyle \sum_{k=1}^{6}\dfrac{1}{k!(13-k)!}=\dfrac{n}{12!}$
この動画を見る 

福田の数学〜京都大学2023年文系第4問〜部分和を含んだ漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 数列{$a_n$}は次の条件を満たしている。
$a_1$=3, $a_n$=$\frac{S_n}{n}$+$(n-1)・2^n$ (n=2,3,4,...)
ただし、$S_n$=$a_1$+$a_2$+...+$a_n$である。このとき、数列{$a_n$}の一般項を求めよ。

2023京都大学文系過去問
この動画を見る 
PAGE TOP