福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える - 質問解決D.B.(データベース)

福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える

問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
投稿日:2023.07.21

<関連動画>

京都大 確率 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
出た目の最大値を$M_{n}$
最小値を$m_{n}$とする
$M_{n}-m_{n} \gt 1$となる確率を求めよ

出典:1986年京都大学 過去問
この動画を見る 

『!』の記号について~中学生でも理解させます~

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田の数学〜大阪大学2025理系第5問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

投げたときに表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインがある。

$A,B,C$の$3$文字を$BAC$のように$1$個ずつ

すべて並べて得られる文字列に対して、

コインを投げて次の操作を行う。

・表がで出たら文字列の左から$1$文字目と
 $2$文字目を入れかえる。

・裏がで出たら文字列の左から$2$文字目と
 $3$文字目を入れかえる。

例えば、文字列が$BAC$であるときに、

$2$回続けてコインを投げて表、裏の順に出た

とすると、文字列は$BAC$から$ABC$を経て

$ACB$となる。

最初の文字列は$ABC$であるとする。

コインを$n$回続けて投げたあとの文字列が

$ABC$である確率を$p_n$とし、

$BCA$である確率を$q_n$とする。

(1)$k$を正の整数とするとき、

$p_{2k}-q_{2k}$を求めよ。

(2)$n$を正の整数とするとき、

$p_n$を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 

【数A】確率:1個のサイコロを3回投げて出る目の最小値が2以下になる確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #サクシード#サクシード数学Ⅰ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のサイコロを3回投げて、出る目の最小値が2以下になる確率を求めよ
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(5)〜円順列(後編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(1)赤玉4個,黄玉2個,白玉1個を円形に並べる方法は何通りあるか。
(2)赤玉4個,黄玉2個,白玉1個を紐に通して数珠を作る方法は何通りあるか。

${\Large\boxed{2}}$
(1)赤玉4個,黄玉2個,白玉2個を円形に並べる方法は何通りあるか。
(2)赤玉4個,黄玉2個,白玉2個を紐に通して数珠を作る方法は何通りあるか。
この動画を見る 
PAGE TOP