【数学】中3-49 平行線と線分の比①(基本編) - 質問解決D.B.(データベース)

【数学】中3-49 平行線と線分の比①(基本編)

問題文全文(内容文):
◎x,yの値を求めよう!
※図は動画内参照
単元: #数学(中学生)#中3数学#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yの値を求めよう!
※図は動画内参照
投稿日:2013.09.15

<関連動画>

【数学】中高一貫校問題集2幾何157:三平方の定理:三角形の面積

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=14cm, BC=15cm, CA=13cmである△ABCにおいて、Aから辺BCに引いた垂線と辺BCとの交点をHとする。
(1)線分BHの長さを求めなさい。
(2)△ABCの面積を求めなさい。
この動画を見る 

【高校受験対策】数学-死守25

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#文章題#文章題その他#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-4-8$を計算しなさい.

②$\dfrac{1}{3}-\dfrac{3}{7}$を計算しなさい.

③$\sqrt{50}-\sqrt{32}$を計算しなさい.

④2次方程式$x^ 2 - 5x + 2 = 0$を解きなさい.

⑤図1のように,四角形$ABCD$の3つの頂点における外角が
わかっているとき,$\angle x$の大きさを求めなさい.

⑥図2のような半径$6cm$の半球の表面積と体積を求めなさい.
ただし,円周率は$\pi$とする.

⑦右の表は,あるクラスの1日の家庭での学習時間を
度数分布表にまとめたものである.
この表から$\Box$にあてはまる数と最頻値(モード) を求めなさい.

⑧ある家庭では,昨年1月の電気代と水道代の1日当たりの合計額は530円だった.
その後,家族で節電・節水を心がけたため,今年1月の1日当たりの額は,
昨年1月と比較して電気代は15%,水道代は10%減り,
1日当たりの合計額は460円となった.
昨年1月の1日当たりの電気代と水道代はそれぞれ何円か,求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守4

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$7+3\times (-5)$を計算せよ.

②$3(2a+1)-4(a+2)$を計算せよ.

③$a=-3,b=6$のとき,
$-a^2+2b$の値を求めよ.

④$\dfrac{27}{\sqrt3}-\sqrt{48}$を計算せよ.

⑤1次方程式$x-9=3(x-1)$を解け.

⑥2次方程式$x(x-6)=-4(x-2)$を解け.

⑦$y$は$x$に反比例し,$x=-3$のとき,$y=-8$である.
$x=-4$のときの$y$の値を求めよ.
この動画を見る 

【中学数学】2次方程式:図形に関する問題⑪ 右図で、点Pは関数y=1/2x+3上の点で、そのx座標はaである。また、点QはPからx軸に下した垂線とx軸との交点である。a>0のとき、次の問いに答えよ。

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
教材: #新中学問題集#新中学問題集(数学)3標準編#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右図で、点Pは関数$y=\dfrac{1}{2}x+3$上の点で、そのx座標はaである。また、点QはPからx軸に下した垂線とx軸との交点である。a>0のとき、次の問いに答えよ。
(1)点Pのy座標をaの式で表せ。
(2)△POQの面積が10のとき、点Pの座標を求めよ。
(3)関数$y=\dfrac{1}{2}x+3$とy軸との交点をRとする。△POQの面積が△PORの面積より16大きくなるときの点Pの座標を求めよ。
この動画を見る 

【受験対策】数学-関数13

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように,関数$y=x^2・・・(ア)$のグラフ上に2点,$A,B$がある.
軸上に点$C$をとり,四角形$ADBC$が平行四辺形となるように,点,$D$をとる.
点$A(-3.9)$,点$B(2.4)$のとき,次の各問いに答えなさい.
ただし,点$C$の$y$座標は,点$A$の$y$座標より大きいものとし,
座標の1目もりを1cmとする.

①関数②について,$x$の値が$-3$から$-1$まで増加するときの
変化の割合を求めなさい.

②関数③について,$x$の変域が$-1\leqq x\leqq 4$のとき,
$y$の変域を求めなさい.

③2点$A,B$を通る直線の式を求めなさい.

④平行四辺形$ADBC$の面積が$24cm^2$となるとき,
点$D$の座標を求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP