三角比と二次関数の最大最小 - 質問解決D.B.(データベース)

三角比と二次関数の最大最小

問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき$y=\cos^2\theta+\sin\theta$の$y$の最大値と最小値を求めよ。
また、そのときの$\theta$の値を求めよ。
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき$y=\cos^2\theta+\sin\theta$の$y$の最大値と最小値を求めよ。
また、そのときの$\theta$の値を求めよ。
投稿日:2020.01.07

<関連動画>

因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4+4y^4$
この動画を見る 

【本当に苦手な人へ8分だけ時間をください!!】因数分解の基礎を現役塾講師が簡単に解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
因数分解の基礎について解説します。
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(3)〜命題と必要十分な条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
(3) aを正の実数とする。 実数からなる集合X, Yを次で定める。
$X={x|0 < x < a}, Y={y|3 < y < 5}$
次のそれぞれの命題が成り立つための必要十分条件を、選択肢から1つずつ選べ。
(i) すべてのx∈Xとすべてのy∈Yに対してx<yとなる
(ii) 「すべてのx∈Xに対してx<y」となるy∈Yが存在する
(iii) すべてのx∈Xに対して「x<yとなるy∈Yが存在する」

2022上智大学理系過去問
この動画を見る 

【テスト前に要点チェック!!】三角比まとめ(基礎・対称性・正弦定理・余弦定理)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
三角比の基礎についてまとめました
基礎・対称性・正弦定理・余弦定理
この動画を見る 

式の値 2通りで解説!!

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(60-x)(x-40)=50$
$(60-x)^2+(x-40)^2 =?$
この動画を見る 
PAGE TOP