大学入試問題#917「さすがに落とせん」 - 質問解決D.B.(データベース)

大学入試問題#917「さすがに落とせん」

問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ

出典:1965年京都大学
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ

出典:1965年京都大学
投稿日:2024.08.29

<関連動画>

福田の数学〜京都大学2025理系第3問〜関数の増減と値域

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$e$は自然対数の底とする。

$x\gt \dfrac{1}{\sqrt e}$において定義された次の関数

$f(x),g(x)$を考える。

$f(x)=x^2 \log x$

$g(x)=x^2\log x - \dfrac{1}{1+2\log x}$

実数$t$は$t\gt \dfrac{1}{\sqrt e}$を満たすとする。

曲線$y=f(x)$上の店$(t,f(t))$における接線に垂直で、

点$(t,g(t))$を通る直線を$l_t$とする。

直線$l_t$が$x$軸と交わる点の$x$座標を$p(t)$とする。

$t$が$\dfrac{1}{\sqrt e} \lt t \leqq e$の範囲を動くとき、

$p(t)$の取りうる値の範囲を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

福田のおもしろ数学475〜関数方程式の正しい解き方

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$0$以上の実数の集合を$R'$とする。

$R'→R'$の関数$f(x)$が任意の$x,y$に対して

$xy(y)+yf(x)=f(x)f(y)(f(x)+f(y))$

を満たしている。

$f(x)$を求めて下さい。
    
この動画を見る 

信州大 4次関数に2点で接する直線 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#数学(高校生)#信州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$y=x^4-x^2+x$に相異なる2点で接する直線の方程式を求めよ。
この動画を見る 

東大 不等式 たくみさん4度目の登場 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'09東京大学過去問題
実数$x,-1<x<1,x \neq 0$
(1)示せ
$(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}} $
(2)示せ
$0.9999^{101} < 0.99 < 0.9999^{100} $
この動画を見る 

東京商船大 微分公式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京商船大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-1)^n(n$自然数$)$

(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ

(2)
$f(x)$の極値を求めよ

出典:東京海洋大学 過去問
この動画を見る 
PAGE TOP