福田の数学〜上智大学2023年理工学部第1問(3)〜正四面体を切った断面 - 質問解決D.B.(データベース)

福田の数学〜上智大学2023年理工学部第1問(3)〜正四面体を切った断面

問題文全文(内容文):
1 (3)一辺の長さが2である正四面体OABCにおいて、辺OAの中点をM、辺BCの中点をNとする。
(i)線分MNの長さは    である。
(ii)0<s<1とし、線分MNをs(1s)に内分する点をPとする。Pを通りMNに垂直な平面で四面体OABCを切った断面は    であり、その面積は    である。

    の選択肢
(a)1 (b)2 (c)3 (d)2 (e)1+52 (f)62

    の選択肢
(a)正三角形 (b)正三角形でない二等辺三角形 (c)二等辺三角形でない三角形 (d)長方形 (e)長方形でない平行四辺形 (f)平行四辺形でない四角形

    の選択肢
(a)s2 (b)(1s)2 (c)s(1s) (d)s1s2 
(e)2s2 (f)2(1s)2 (g)2s(1s) (h)2s1s2 
(i)4s2 (j)4(1s)2 (k)4s(1s) (l)4s1s2 
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (3)一辺の長さが2である正四面体OABCにおいて、辺OAの中点をM、辺BCの中点をNとする。
(i)線分MNの長さは    である。
(ii)0<s<1とし、線分MNをs(1s)に内分する点をPとする。Pを通りMNに垂直な平面で四面体OABCを切った断面は    であり、その面積は    である。

    の選択肢
(a)1 (b)2 (c)3 (d)2 (e)1+52 (f)62

    の選択肢
(a)正三角形 (b)正三角形でない二等辺三角形 (c)二等辺三角形でない三角形 (d)長方形 (e)長方形でない平行四辺形 (f)平行四辺形でない四角形

    の選択肢
(a)s2 (b)(1s)2 (c)s(1s) (d)s1s2 
(e)2s2 (f)2(1s)2 (g)2s(1s) (h)2s1s2 
(i)4s2 (j)4(1s)2 (k)4s(1s) (l)4s1s2 
投稿日:2023.09.23

<関連動画>

福田の数学〜早稲田大学2022年理工学部第4問〜正八面体の内部に配置した6個の球の和集合の体積と共通部分の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4一辺の長さが3+1である正八面体の頂点を右図(※動画参照)
のようにP1,P2,P3,P4,P5,P6とする。i=1,2,,6に対して
Pi以外の5点を頂点とする四角錐のすべての面に
内接する球(内部含む)をBiとする。B1の体積をXとし、B1
B2の共通部分の体積をYとし、B1,B2,B3の共通部分の体積をZ
とする。さらにB1,B2,,Bnを合わせて得られる立体の体積を
Vn  (n=2,3,,6)とする。以下の問いに答えよ。
(1)Vn=aX+bY+cZとなる整数a,b,cをn=2,3,6の場合
について求めよ。
(2)Xの値を求めよ。
(3)V2の値を求めよ。

2022早稲田大学理工学部過去問
この動画を見る 

福田の数学〜名古屋大学2023年文系第2問〜空間図形と体積の最小

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#式と証明#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
2 図のような1辺の長さが1の立方体ABCD-EFGHにおいて、辺AD上に点Pをとり、線分APの長さをpとする。このとき、線分AGと線分FPは四角形ADGF上で交わる。その交点をXとする。(※図は動画参照)
(1)線分AXの長さをpを用いて表せ。
(2)三角形APXの面積をpを用いて表せ。
(3)四面体ABPXと四面体EFGXの体積の和をVとする。
Vをpを用いて表せ。
(4)点Pを辺AD上で動かすとき、Vの最小値を求めよ。

2023名古屋大学文系過去問
この動画を見る 

福田の数学〜共通テスト対策にもってこい〜明治大学2023年全学部統一ⅠⅡAB第3問〜四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#空間における垂直と平行と多面体(オイラーの法則)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 一辺の長さが6の正四面体ABCDにおいて、点Aから3点B,C,Dを含む平面に垂線AHを下ろす。また、辺ABを1:2に内分する点をP、辺ACを2:1に内分する点をQ、辺ADをt:1-tに内分する点をRとする。ただし、
0<t<1 とする。
(1)AHの長さは         であり、正四面体ABCDの体積は         である。
(2)AHと三角形PQRの交点をXとすると、AX=    AH である。
(3)三角形PQRの面積は    t2    t+     である。
(4)t=12 のとき、四面体APQRの体積は        で、点Aから3点P,Q,Rを通る平面に垂線AYを下ろすと、AYの長さは             である。
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(7)〜直三角柱の切断面の面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形の性質#微分法と積分法#学校別大学入試過去問解説(数学)#立体図形#立体切断#空間における垂直と平行と多面体(オイラーの法則)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(7)1辺の長さが2の正三角形を底面とし、高さが4の直三角柱を考える。
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の
面積の最小値は    である。ただし、直三角柱は底面と側面が垂直である三角柱
のことである。
条件① 切断面が直角三角形になる。
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。

2022慶應義塾大学薬学部過去問
この動画を見る 

四面体の体積(垂線はどこに落ちる??)慶應義塾 2021 C

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
体積=?
*図は動画内参照

2021慶應義塾高等学校
この動画を見る 
PAGE TOP preload imagepreload image