福田の数学〜東京理科大学2023年創域理工学部第1問(1)〜確率の基本性質 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2023年創域理工学部第1問(1)〜確率の基本性質

問題文全文(内容文):
$\Large\boxed{1}$ (1)(a)1個のさいころを4回続けて投げるとき、4回とも同じ目が出る確率は
$\displaystyle\frac{1}{\boxed{\ \ アイウ\ \ }}$であり、3, 4, 5, 6の目がそれぞれ1回ずつ出る確率は$\displaystyle\frac{1}{\boxed{\ \ エオ\ \ }}$である。
(b)1個のさいころを4回続けて投げて、出た目を順に左から並べて4桁の整数Nを作る。例えば、1回目に2、2回目に6、3回目に1、4回目に2の目がでた場合はN=2612である。Nが偶数となる確率は$\displaystyle\frac{1}{\boxed{\ \ カ\ \ }}$であり、N≧2023 となる確率は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であり、N≧5555 となる確率は$\displaystyle\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシス\ \ }}$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)(a)1個のさいころを4回続けて投げるとき、4回とも同じ目が出る確率は
$\displaystyle\frac{1}{\boxed{\ \ アイウ\ \ }}$であり、3, 4, 5, 6の目がそれぞれ1回ずつ出る確率は$\displaystyle\frac{1}{\boxed{\ \ エオ\ \ }}$である。
(b)1個のさいころを4回続けて投げて、出た目を順に左から並べて4桁の整数Nを作る。例えば、1回目に2、2回目に6、3回目に1、4回目に2の目がでた場合はN=2612である。Nが偶数となる確率は$\displaystyle\frac{1}{\boxed{\ \ カ\ \ }}$であり、N≧2023 となる確率は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であり、N≧5555 となる確率は$\displaystyle\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシス\ \ }}$である。
投稿日:2023.10.08

<関連動画>

対等性とは?僕と君は対等な関係 法政大学高校

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
H,O,S,E,Iの5文字を1列に並べるときHがSより左にある場合の数を求めよ。
法政大学高等学校
この動画を見る 

期待値とは?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
期待値の求め方について解説した動画です
この動画を見る 

確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
始めに赤箱から球を個取り出して戻す。
次回以降は取り出した玉と同じ色の箱から玉を取り出す。
$n$回目に赤が出る確率を求めよ
この動画を見る 

福田の数学〜青山学院大学2025理工学部第1問〜さいころの目によって平面上を動く点に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$4$回続けて投げる

反復試行において、

さいころの出る目を順に$X_1,X_2,X_3,X_4$として、

$xy$平面上の$4$点$P_1,P_2,P_3,P_4$を

以下のように定める。

$1$.原点$O$から$x$軸の正の向きに$X_1$だけ進んだ位置に

ある点を$P_1$とする。

$2$.$P_1$から$y$軸の正の向きに$X_2$だけ進んだ位置に

ある点を$P_2$とする。

$3$.$P_2$から$x$軸の負の向きに$X_3$だけ進んだ位置に

ある点を$P_3$とする。

$4$.$P_3$から$y$軸の負の向きに$X_4$だけ進んだ位置に

ある点を$P_4$とする。

例えば、さいころの出た目が順に$3,2,5,5$ならば

$P_1,P_2,P_3,P_4$の座標はそれぞれ

$(3,0),(3,2),(-2,2),(-2,-3)$となる。

(1)$P_4$が$O$と一致する確率は$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)線分$OP_1$と線分$P_3P_4$が共有点をもつ確率は

$\dfrac{\boxed{エオ}}{\boxed{カキク}}$である。

ただし、線分は両方の端点を含むものとする。

(3)$P_4$の座標が$(3,3)$である確率は

$\dfrac{\boxed{ケ}}{\boxed{コサシ}}$である。
    
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第1問〜整数解と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 袋の中に1から5までの番号をつけた5個の玉が入っている。この袋から玉を1個取り出し、番号を調べてから元に戻す試行を、4回続けて行う。n回目(1≦n≦4)に取り出された玉の番号を$r_n$とするとき、
・$r_1$+$r_2$+$r_3$+$r_4$≦8 となる確率は$\boxed{\ \ (ア)\ \ }$
・$\displaystyle\frac{4}{r_1r_2}$+$\displaystyle\frac{2}{r_3r_4}$=1となる確率は$\boxed{\ \ (イ)\ \ }$
である。

2023東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP