【保存版】相加平均・相乗平均の覚え方 - 質問解決D.B.(データベース)

【保存版】相加平均・相乗平均の覚え方

問題文全文(内容文):
【保存版】相加平均・相乗平均の覚え方
※問題は動画内参照
単元: #数Ⅱ#図形の性質#式と証明#周角と円に内接する四角形・円と接線・接弦定理#恒等式・等式・不等式の証明#その他#数学(高校生)#参考書紹介
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【保存版】相加平均・相乗平均の覚え方
※問題は動画内参照
投稿日:2024.07.11

<関連動画>

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

相加相乗平均のエレガントな証明2通り

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{a_1+a_2+・・・・+a_n}{n}\geqq \sqrt[n]{a_1,a_2・・・・a_n}$
これを求めよ.

この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 曲線C:y=\cos^3x (0 \leqq x \leqq \frac{\pi}{2}),x軸およびy軸で囲まれる図形の面s系をS\\
とする。0 \lt t \lt \frac{\pi}{2}とし、C上の点Q(t,\cos^3t)と原点O,およびP(t,o),R(0,\cos^3t)\\
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。\\
(1)Sを求めよ。\\
(2)f(t)は最大値をただ一つのtでとることを示せ。そのときのtを\alphaとすると、\\
f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha} であることを示せ。\\
(3)\frac{f(\alpha)}{S} \lt \frac{9}{16} を示せ。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(7)\\
e^a(b-a) \lt e^b-e^a \lt e^b(b-a)\\
(ただし、a \lt b)
\end{eqnarray}
この動画を見る 

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 
PAGE TOP