大学入試問題#907「チャートに掲載されてる?」 #信州大学理学部(2024) #極限 - 質問解決D.B.(データベース)

大学入試問題#907「チャートに掲載されてる?」 #信州大学理学部(2024) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to a } \displaystyle \frac{x^3-x^2+(2a-3)x+b}{x^2-(a-1)x-a}=3$
が成り立つように定数$a$と$b$の値を求めよ。

出典:2024年信州大学理学部
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to a } \displaystyle \frac{x^3-x^2+(2a-3)x+b}{x^2-(a-1)x-a}=3$
が成り立つように定数$a$と$b$の値を求めよ。

出典:2024年信州大学理学部
投稿日:2024.08.17

<関連動画>

福田の数学〜慶應義塾大学2025経済学部第4問〜指数不等式と対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$p$を正の実数、$m$を自然数とし、

曲線$y=-x^2$上の点$(-p,-p^2)$における

接線と直線$y=2m$の交点を$P_m$とする。

$P_m$の$x$座標が$1$以下となる$m$の最大値を

$N$とする。

(1)$P_m$の$x$座標を、$p$と$m$を用いて表せ。

(2)$N=40$が成り立つ$p$の範囲を求めよ。

以下、$n$を自然数とし、

$a=3n\log_3 6-\log_2+n$とする。

(3)$3^a$は$2$以上の自然数である。

$3^a$の素因数分解を、$n$を用いて書け。

(4)$p=3^a$のとき、$N\lt 2^{1000}$となる

自然数$n$の最大値を求めよ。

なお、必要があれば$1.58 \lt \log_2 3 \lt 1.50$を用いよ。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(2)〜高次方程式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)A, B, C, Dを定数とする。$f(x)$=$2x^3$-$9x^2$+$Ax$+$B$, $g(x)$=$x^2$-$Cx$-$D$
とおく。以下の問いに答えよ。
(a)$g(1-\sqrt 2)$=0 かつ $g(1+\sqrt 2)$=0のとき、$C$=$\boxed{\ \ セ\ \ }$, $D$=$\boxed{\ \ ソ\ \ }$である。また、$f(1-\sqrt 2)$=0 かつ $f(1+\sqrt 2)$=0のとき、$A$=$\boxed{\ \ タ\ \ }$, $B$=$\boxed{\ \ チ\ \ }$であり、方程式$f(x)$=0を満たす有理数$x$は
$x$=$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$
である。
この動画を見る 

#45 数検1級1次 過去問 複雑な方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$3x^2-12x+8=\displaystyle \frac{i\sqrt{ x-1 }}{\sqrt{ 3 }}$を満たす実数解$x$を求めよ
この動画を見る 

【高校数学】 数Ⅱ-33 2次方程式の解と判別式⑥

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$4x^2+(k-1)x+1=0$が重解をもつとき、定数kの値とその解を求めよう。

②2次方程式$x^2+3kx-1=2kx-5$が虚数解をもつとき、定数kの値の範囲を求めよう。
この動画を見る 

福田の数学〜中央大学2024経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)$ は
$\displaystyle f(x)=x^2 \int^{2}_{0} f'(t) dt +Ax, \quad f(1)=1$
を満たしている。ただし、$A$ は定数である。このとき、$f(x)$ が最大になる $x$ を求めよ。
この動画を見る 
PAGE TOP