#高専_2#定積分 - 質問解決D.B.(データベース)

#高専_2#定積分

問題文全文(内容文):
$\displaystyle \int (1-\sin^3x)\cos x$ $dx$
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (1-\sin^3x)\cos x$ $dx$
投稿日:2024.08.05

<関連動画>

大学入試問題#913「作成者サイコ−!」 #広島市立大学後期2024

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{8} \displaystyle \frac{1}{x(x+1)}log \displaystyle \frac{x}{x+1} dx$

出典:2024年 広島市立大学後期試験
この動画を見る 

#電気通信大学2024#不定積分_53

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} e^x \sqrt{6-e^x} dx$を解け.

2024電気通信大学過去問題
この動画を見る 

広島大 微分積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$C:f(x)=x^3-4x^2+5x$
(1)C上の点P(p,f(p))における接線が、原点とPの間でCと交わるようなPの範囲。ただしP>0
(2)Pが(1)の範囲。接線、y軸、Cで囲まれる2つの図形の面積が等しい。Pの値。
この動画を見る 

大学入試問題#821「王道問題」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} \displaystyle \frac{2x+3}{x^2+2x+4} dx$

出典:2022年筑波大学
この動画を見る 

福田の数学〜東京大学2023年文系第2問〜定積分で表された関数と最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の放物線y=3$x^2$-4xをCとおき、直線y=2xをlとおく。実数tに対し、C上の点P(t, $3t^2-4t$)とlの距離をf(t)とする。
(1)-1≦a≦2の範囲の実数aに対し、定積分
g(a)=$\displaystyle\int_{-1}^af(t)dt$
を求めよ。
(2)aが0≦a≦2の範囲を動くとき、g(a)-f(a)の最大値および最小値を求めよ。

2023東京大学文系過去問
この動画を見る 
PAGE TOP